Top 15 Research Vehicles from Mercedes-Benz

We've compiled a list of 15 Research Vehicles over the last 30 years, which one would you consider the most ground-breaking

Since the early 1980’s, Mercedes-Benz has been presenting research vehicles that fascinating to look at but at the same time, Mercedes was pioneering new methods of vehicle safety and power. The range of innovative solutions found in these research vehicles, from the C111 to the F 125!, gives us a glimpse at the foresight that Mercedes-Benz engineers are able to develop.

We’ve compiled a list of the top 15 Research Vehicles over the last 30 years, which one would you consider the most ground-breaking?

Mercedes-Benz Research C111

Mercedes-Benz Research C111

Mercedes-Benz C 111:

At the Frankfurt International Motor Show in September 1969 Mercedes-Benz presented the C 111. The world queued up to see this “test lab on wheels” with its wedge-shaped body and upward-opening gullwing doors.  The color, orange metallic, originally described as “rosé wine”, also helped attract attention. Less conspicuous, but no less unusual, were the technical innovations. The body consisted of fibre-glass reinforced plastic and was riveted and bonded to the steel frame-floor unit.

Mercedes-Benz Research Auto 2000

Mercedes-Benz Research Auto 2000

Mercedes-Benz Auto 2000:

In the late 1970s the Federal German Ministry for Research and Technology launched the Auto 2000 project, in which several carmakers participated. Fuel consumption was not to exceed eleven litres per 100 km (21.3 mpg) for a vehicle with a cerb weight of up to 2,150 kilograms – a very ambitious target in those days – and the maximum for vehicles weighing 1,250 to 1,700 kilograms was 9.5 litres/100 km (24.7 mpg).

The Auto 2000, first presented to the public at the 1981 Frankfurt International Motor Show and was meant to accommodate four people.  It had an aerodynamically optimised body with a very low Cd (drag coefficient) of 0.28. As many as three different engine concepts were tested in this vehicle. An automatic cylinder cutoff system was premiered in a 3.8-litre V8 petrol engine. When only little power was required, four of the eight combustion chambers were temporarily shut down – today this is a feature of several large-displacement petrol engines built by Mercedes-Benz. The 3.3-litre diesel engine tested in the Auto 2000 had exemplary accelerating power thanks to its six cylinders and two turbochargers; it offered an excellent range of 7.5 litres per 100 kilometres (about 31.3 mpg) at a speed of 120 km/h.

Mercedes-Benz NAFA

Mercedes-Benz NAFA

Mercedes-Benz short-distance vehicle NAFA:

Congested streets, a lack of parking space, and long tailbacks raised new questions in motor vehicle research. Mercedes-Benz answered them in 1981 with a concept study labelled “Nahverkehrsfahrzeug” or NAFA for short – the short-distance vehicle. With an overall length of 2.50 metres and an overall height and width of 1.50 metres, the innovative two-seater contradicted everything the company had been known to stand for to date.

The NAFA study did not fall into oblivion. The insights it produced were incorporated into the design of the Mercedes-Benz A-Class, the prototype of which made its debut in 1996. In the smart city coupé, introduced in 1997, the concept of the compact urban car celebrated its coming of age. It has been manufactured in large numbers ever since.

Mercedes-Benz F100 Research Vehicle

Mercedes-Benz F100 Research Vehicle

Mercedes-Benz F100:

Daimler-Benz deliberately chose the North American International Auto Show in Detroit in 1991 – the first major trade show of the year – to present a very special automobile: the Mercedes-Benz F 100. This research car gave tangible expression to the vision of engineers and market strategists for the automobile of the future. Never before had so many ideas and innovative technologies been realised in a fully operational car.

In the F100, the driver was seated in the middle.  Statistically, a car is occupied by 1.2 to 1.7 persons – driver included. So the driver deserves the safest place, which is the centre position, with its large distances to car body parts. Furthermore, the driver can always get out of the car on the off-traffic side.

With all its qualities, the Mercedes-Benz F 100 was not simply a test mule for the engineers – it represented a new type of automobile. It anticipated the future of mobility, which has partly become reality since the car made its debut in 1991. At the same time, it emphasised the fact that the customer is the focus of technical progress when a research vehicle is designed.

Mercedes-Benz Research C112

Mercedes-Benz Research C112

Mercedes-Benz C112:

In Group C, during the 1990 racing season, Mercedes-Benz, in cooperation with the Swiss Sauber team, fielded the C 11. The car proved to be a great success, and the team was crowned world champion at the end of the season. The triumph was an inspiration for the Mercedes-Benz engineers. Looking for a way to test active dynamic handling systems for series-production cars, they came up with the C 112, a high-performance sports car. It was powered by a six-litre V12 engine that generated 300 kW (408 hp) and put 580 Newton metres of torque on the crankshaft. The challenge was to stretch the physical limits while transferring this performance to the road and meeting the highest levels of active safety.

The C 112 was the first vehicle since the C 111 to feature gullwing doors. Ever since the 1950s, they have been a symbol of Mercedes-Benz sports cars. The 300 SL coupé (W 194/198 series from 1952 and 1954 respectively) was the first to have them – a car whose excellent technical qualities made it stand out in its day. The C 112, with its streamlined body, followed suit.

The C 112 was also the first car to afford active suspension labelled Active Body Control (ABC). Each wheel is equipped with a combination of a spring and hydraulic servo cylinder. Sensors detect all the vehicle’s motions – vertical displacement, roll and pitch. To eliminate the unwanted motion, computers evaluate the data and control the active suspension elements accordingly. The result: an unprecedented level of stable roadholding.

Mercedes-Benz Vario

Mercedes-Benz Vario

Mercedes-Benz Vario Research Car:

The Mercedes-Benz Vario Research Car is really four cars in one – variability was the design focus of the Vario Research Car (VRC) by Mercedes-Benz, a car that attracted great attention at its premiere at the 1995 Geneva Motor Show. Within just a few minutes, the VRC can be transformed into a different car.

For everyday driving, it’s a saloon. For longer journeys, the load capacity of an estate car is available. In the summer, the sun invites you to take an open-top ride in a convertible. And for heavy loads, there’s the pickup with its open cargo space.

It has a one-piece body that consists of a roof, side walls and rear section; the body can be lifted off and exchanged for another variant. All that is needed is a few simple operations that take just 15 minutes. The Vario Research Car was a vision: customers would not themselves own the bodies but would drive up to a rental station. While they drank a coffee, service technicians would exchange the body. A few minutes later, the customer would be on the road again. The driver could decide how long to use a particular body variant, because the rental system would be just as flexible as the car itself.

 

Mercedes-Benz F200 Imagination

Mercedes-Benz F200 Imagination

Mercedes-Benz F200 Imagination:

The Mercedes-Benz F 200 Imagination, presented at the 1996 Paris Motor Show, was created to test new ergonomic concepts based on drive-by-wire technology, cockpit design.  It was powered by a Four-stroke spark-ignition engine with 12 cylinders, six litres of displacement, 290 kW (394 hp), offered rear-wheel drive with a five-speed electronically controlled automatic transmission.

Small joysticks in the doors and the centre console for steering and braking – replace the steering wheel. The signals are exclusively transmitted electronically to the relevant components (drive-by-wire). The conventional mechanical control elements used by the driver are now linked to electric and hydraulic actuators, and electronic pulses carry out the desired actions.

Mercedes-Benz F300 Life Jet

Mercedes-Benz F300 Life Jet

Mercedes-Benz F300 Life Jet

How can the feel and cornering dynamics of a motorcycle be combined with the safety and comfort of a car?  This was the question that initiated the design that eventually became known as the F300 Life Jet. Motorcyclists enjoy the freedom offered by their vehicles, they’re able to lean into bends, sense the power of the engine, feel at one with the elements, and experience the unbridled pleasure of the road.  These are all things that the designers and engineers of the F 300 Life Jet strived to convey with their concept. Just as importantly however, it was also designed to offer the same advantages of a car: stability coming from three wheels instead of two. The top can be closed, and seat belts are provided. The motoring experience can be shared with a second person inside the vehicle, both unimpeded by protective clothing, helmet and wind noise. And air conditioning makes for pleasant temperatures.

Mercedes-Benz F400 Carving

Mercedes-Benz F400 Carving

Mercedes-Benz F400 Carving:

The F400 Carving, which gets its name from the sporty carvers on ski slopes, was debuted at the Tokyo Motor Show in 2001 and was created with the plan to test novel dynamic handling systems.  This led to the most conspicuous feature of the Mercedes F400 Carving, The tilting of its wheels. When cornering, the wheels on the outside of the bend tilt by as much as 20 degrees, which distinctly improves directional stability and roadholding, and reduces the danger of skidding. Electronics have been combined with mechanics to achieve this. Sensors measure the road speed, acceleration, steering lock and yaw of the car, and send control signals to the outer wheels’ hydraulic servo cylinders, causing them to tilt at a precisely defined angle. The kerb-side wheels, like the body, remain in their normal position.

Mercedes-Benz F500 Mind

Mercedes-Benz F500 Mind

Mercedes-Benz F500 Mind:

Presented at the 2003 Tokyo Motor Show, the Mercedes-Benz F500 Mind proved that the future of auto industry will never cease to be exciting. The four-door car, designed as a modern hatchback saloon, served as a research lab on wheels and demonstrated over a dozen technical ideas for enhancing the safety, propulsion and comfort of future Mercedes-Benz passenger cars.

The F500 mind was designed to utilize different propulsion energies. If a great deal of power is required, a V8 diesel engine with 184 kW (250 hp) drives the F 500 Mind – and simultaneously charges the batteries, as the car also features a 50 kW electric motor that works either by itself or in conjunction with the internal combustion engine. An electronic control unit that adapts to the traffic situation and driving style perfectly coordinates the engine and motor.

The electric motor, for instance, powers the car when it starts up, in stop-and-go traffic and in other situations where the internal combustion engine, by virtue of its design principles, does not develop optimum efficiency. Should the driver require higher engine output, the V8 engine cuts in to provide dynamic acceleration. The electric drive’s 300-volt battery, located underneath the passenger compartment, is recharged during braking.  All resulting in fuel savings of up to 20 percent.

Mercedes-Benz Research Bionic Car

Mercedes-Benz Research Bionic Car

Mercedes-Benz Bionic Car:

For the first time, the engineers specifically looked for a role model in nature, one that lends itself to an aerodynamically efficient, safe, comfortable and environmentally compatible automobile – not just in detail features, but also in its overall shape and structure. Their search led them to the boxfish.

This fish, which lives in tropical waters, has excellent hydrodynamic properties, despite its angular, cube-like body. Its shape is aerodynamically ideal. On a model representing a true copy of the boxfish body, the engineers measured a drag coefficient (Cd) as low as 0.06.

Alongside maximum aerodynamic efficiency and a lightweight concept gleaned from nature, the advanced turbodiesel engine with common rail direct injection (103 kW/140 hp) and novel SCR (Selective Catalytic Reduction) technology contributes significantly to reductions in fuel consumption and pollutant emissions. In the EU driving cycle, the concept car consumes 4.3 litres of fuel per 100 kilometres (54.7 mpg) – 20 percent less than a comparable production model. In line with US measuring methodology (FTP 75), the car does some 70 miles per gallon (combined) – 30 percent more than a production car. At a constant speed of 90 km/h (55 mph), the direct injection engine consumes 2.8 litres of diesel per 100 kilometres, corresponding to 84 miles per gallon in the US test cycle.

Mercedes-Benz F600 Hygenius

Mercedes-Benz F600 Hygenius

Mercedes-Benz F600 Hygenius:

The Mercedes-Benz F 600 HYGENIUS continued the series of fascinating and groundbreaking research cars. Powered by an 85 kW (115 hp) zero-emission fuel cell drive, the compact family car consumes the equivalent of just 2.9 litres per 100 kilometres (81 mpg) and has a range of over 400 kilometres on one tank filling of hydrogen.

The extensively reworked fuel cell of the F 600 HYGENIUS is some 40 per cent smaller than before, operates even more efficiently, and is exceptional for its good cold-start ability. The continuous output of the fuel cell drive is 60 kW (82 hp). Energy not required for driving the car is stored in a high-performance lithium-ion battery. The system therefore operates rather like a hybrid drive and selects the source of energy best-suited to the driving situation. The generous amount of energy made available by the fuel cell can also be used for the well-being of the passengers in the F 600HYGENIUS. The cup holders, for instance, cool or heat beverages with electricity generated by the environment friendly unit. Via a conventional power outlet, electrical appliances can be operated at normal voltage. If required, the fuel cell can also function as a mobile power plant: its electric power output of 66 kW is enough to supply several one-family houses with electricity.

Mercedes-Benz F700

Mercedes-Benz F700

Mercedes-Benz F700:

The Mercedes-Benz F 700 presents the future of the superior touring sedan. It demonstrates innovative approaches and technologies for using resources sparingly, protecting the environment and permitting the driver and passengers to travel in a completely relaxed style.

At the heart of the F 700 is a novel powertrain. DIESOTTO combines the advantages of the low-emission petrol engine with the diesel’s fuel economy. For the first time, the diesel’s principle of (controlled homogeneous) charge compression ignition is incorporated in a petrol engine. Also, thanks to homogeneous combustion at reduced reaction temperatures, nitrogen oxide emissions are minimized. Moreover, the reduction in displacement and the number of cylinders improves the degree of efficiency. The F 700 is powered by a compact four-cylinder engine with a displacement of 1.8 litres, which nonetheless delivers the superior performance typical of a luxury-class saloon. A two-stage turbocharger is responsible for the engine’s excellent response and high-torque accelerating power. In addition, on ignition, the hybrid module electric motor assists the internal combustion engine. The maximum engine output is 175 kW (238 hp); the electric motor develops another 15 kW (20 hp), and the system’s maximum torque is as high as 400 Newton metres. Acceleration from standstill to 100 km/h in 7.5 seconds is testament to the dynamism of the F 700, whose top speed is limited to 200 km/h. Despite this outstanding performance, the F 700 has a fuel consumption in the EU driving cycle of just 5.3 litres (44.3 mpg), which corresponds to carbon dioxide emissions of 127 grams – an extremely low level for a car of this size.

Mercedes-Benz F800 Style

Mercedes-Benz F800 Style

Mercedes-Benz F800 Style:

The Mercedes-Benz F 800 Style research vehicle showed us the future of premium automobiles from a new perspective. As a five-seat upper-range sedan combining highly efficient drive technologies, unparalleled safety and convenience features we didn’t even know we needed, the F800 Style became a stylish-sporty interpretation of the new Mercedes-Benz design.  The exterior was complete with LED headlights that offered exciting, distinctive details, a spacious interiorm despite compact outer dimensions and a modern sense of lightness on the inside.

The F 800 Style is suitable for use with a variety of drive system options thanks to its flexible multi drive platform, as the following example with two technically independent variants demonstrates:

  • As the Plug-in Hybrid, the F 800 Style offers electric mobility with zero local emissions in urban settings. Over longer distances, a gasoline engine equipped with the latest-generation direct-injection technology is supported by the hybrid module, thereby enabling a high-performance and efficient driving experience.
  • The F-CELL variant is equipped with a fuel cell unit that runs on hydrogen for electric driving with zero local emissions. The only emission from electric cars powered by a fuel cell is water vapor.
Mercedes-Benz F125!

Mercedes-Benz F125!

Mercedes-Benz F125!:

The F 125! research vehicle was designed to anticipate future trends and prepared the way for implementation of an innovative premium concept for large, luxurious automobiles. In the F 125! Mercedes-Benz rigorously followed its vision of emission-free driving with hydrogen power, underlining the potential of H2 as an energy source for the future. While previous Mercedes-Benz research vehicles had “looked ahead” by roughly one vehicle generation – seven to eight years – the F 125! as the latest technological visionary went a whole step further, by more than two generations to the year 2025 and beyond.

The F 125! was created as an innovative four-seater luxury saloon with a powerful, emission-free electric drive system based on the fuel cell technology developed to series production maturity by Mercedes-Benz. This study combined pioneering and highly efficient storage, drive and bodyshell technologies with unique control and display concepts. The research vehicle also presented itself with an expressive design which transfers the classic Mercedes design idiom into the future.

Mercedes-Benz F-Series Research Vehicles

Technology once seen only on Mercedes-Benz research vehicles can now be found on today's Mercedes production models

From the very beginning, when Carl Benz invented the world’s first motorcar, the Benz Patent-Motorwagen in 1886, and even today, Mercedes-Benz has maintained a legacy of inventive genius. This can be seen in many if not all of the Mercedes-Benz production models of today. Play the video below for an in-depth look at the journey of the F-Series research vehicles or check out the gallery below and find out what technologies each vehicle provided for the models of today.

Mercedes-Benz F100 Research Vehicle

Mercedes-Benz F100 Research Vehicle

Back as 1991, the first car of the “F” series, the F 100, introduced what was at the time revolutionary concepts – concepts like voice control, autonomous intelligent cruise control and distance radar – these are all technologies that are now in series production.

Mercedes-Benz F200 Imagination

Mercedes-Benz F200 Imagination

When the Mercedes-Benz F 200 Imagination arrived in 1996, it featured a revolutionary step in design, in addition to Active Body Control (ABC)  advancements that offered increased stability. Additional innovations on the Mercedes F 200 included doors that opened automatically with a magnetic card (the forerunner of today’s Keyless-Go system), side airbags, windowbags (another present-day feature) and the Active Light function that’s also available today.

Mercedes-Benz F400

Mercedes-Benz F400

Then, in 2001, the Mercedes F 400 Carving was designed to significantly improve driving dynamics with the Active Tire Tilt Control (ATTC) system.  It was created by adjusting the camber angle of both the front and rear wheels when cornering or during hard braking.

Mercedes-Benz F500

Mercedes-Benz F500

Hybrid technology was introduced in later models like the Hybrid F 500 Mind.  In addition to taking the first steps in hybrid technology, it also featured innovations such as Night View Assist, a system that operates using infrared headlamps for improved visibility at night. Today this concept is a reality in the E- and S-Class models.

Mercedes-Benz F600

Mercedes-Benz F600

In 2006, the Mercedes-Benz F 600 Hygenius marked the introduction of an environmentally friendly fuel-cell hybrid drive vehicle.

Mercedes-Benz F700

Mercedes-Benz F700

It was followed shortly after in 2007 with the F 700 that featured the revolutionary DIESOTTO engine.  The DIESOTTO engine was made noteworthy by combining the advantages of low-emission combustion engines with the consumption benefits of a diesel engine.

Mercedes-Benz F800

Mercedes-Benz F800

The Mercedes F 800 Style paved the way for new design styling in 2008 with its coupé-like characteristics. It also featured an innovative new multi-drive platform, a new display concept – Cam-Touch-Pad HMI (Human Machine Interface), and the current PRE-SAFE® 360° system which offers extra protection in the event of a rear end collision.

Mercedes-Benz F125

Mercedes-Benz F125

More recently in 2011, we saw the arrival of Mercedes-Benz’s most recent research vehicle, the F 125! It was the world’s introduction to emission-free driving in the luxury segment. The Mercedes flagship vehicle represented a radical reinterpretation of a sports saloon, blending futuristic lightweight materials with experimental operating concepts, innovative drive technology and a breathtaking new design direction. Via: Mercedes-Benz UK

Mercedes-Benz Plans Entry Level Coupe for 2014

Mercedes-Benz will be producing a smaller version of the CLS based on the F800 style for 2012

The 2012 Mercedes-Benz CLS made its world premiere in August of last year and now, thanks to company insiders, we have confirmed that Mercedes will be producing a smaller version of the CLS. The new baby CLS, not yet named, is expected to premiere in 2014 around the same time as the next-generation Mercedes A-Class and B-Class.

The all new vehicle, based on the new front-wheel-drive MFA platform, will take its design cues from the 2012 CLS-Class and the F800 Style Concept. We are expecting to see Mercedes’ very distinctive upright grille and bold lines down the side.

Being the smallest coupe in Mercedes’ future line-up, the model will likely be marketed to a younger audience at a price point set below the U.S. entry level C-Class. A great way to hook younger buyers on the Mercedes-Benz brand and compete with BMW and Audi’s entry level vehicles.

The engine line-up had yet to be released but buyers of the mini coupe should expect to choose from wither a 1.4 or 1.8-litre turbocharged petrol engine supplied by Renault, thanks to their recent alliance. The French automaker will also supply a 1.6-litre diesel. Topping the range will be Mercedes’ own 2.0 petrol and 2.2-litre diesel, producing around 200bhp and 170bhp.

Power will be delivered to the front wheels through a six-speed manual or seven-speed double-clutch automatic gearbox. The MFA platform has been developed with alternative propulsion methods in mind, so a hybrid is also expected to feature.

Mercedes-Benz Classics on Display at Retro Classics 2011

The Retro Classic event will take place for the eleventh time in Stuttgart. Between March 11 and 13, 2011

Mercedes-Benz Classic will be featuring several highlights at this year’s Retro Classics 2011. Being that 2011 marks the 125th birthday of the motor car, the German manufacturer will display four fascinating milestone vehicles from its collection. All four of these models are representative of automobile mobility: a Benz Patent Motor Car, the world’s first automobile dating from 1886; a Mercedes-Benz 500 K special Roadster (model series W 29) dating from 1934; a Mercedes-Benz 220 SE Coupé (W 111), model year 1961; and finally the latest research vehicle, the F 800 Style, which premiered in 2010.

As a trade show for classic cars and automotive culture, Retro Classics is one of the most important events of its kind. The Retro Classic event will take place for the eleventh time in southern Germany in the city of Stuttgart. Between March 11 and 13, 2011 (the preview will take place on March 10th), 1,300 exhibitors will display more than 3,000 vehicles for the public. The heart of this historic automotive exhibition arena is the 540-square-metre exhibition area used by Mercedes-Benz Classic in Hall 1, where both collection and sale cars will rub shoulders with each other.

“For Mercedes-Benz Classic it is important here in particular – in the home of the company – to have a strong presence”, explains Michael Bock, Head of Mercedes-Benz Classic. At the same time it is all about making the fascination surrounding the brand come alive.

In addition, the latest vehicle offerings will also boast a further highlight: in spring the new Mercedes-Benz C-Class Coupé (model series C 204) is celebrating its world premiere and is all set to enhance the product portfolio comprising these elegant vehicles – as a result, when it comes to the sale cars at Retro Classics, Mercedes-Benz Classic is placing the focus squarely on coupés. Three classics will therefore be on display: the Mercedes-Benz 280 SLC (model series C 107, model year 1981), the 230 CE (C 123, 1982) and the E 220 Coupé (C 124, 1993). The Mercedes-Benz Museum Shop will also be represented with a large sales stand, this year featuring the “125! years of innovation selection”.

Yet another highlight of Retro Classics will be the stand design, for which the Mercedes-Benz design division has opened up its archives to lend the vehicles on display an additional historic touch courtesy of some bonus historical items. These will include product drawings dating from the 1930’s, as well as some interpretations from the 1950’s and also images from the present day. To highlight the various eras visually, the drawings are being displayed in contemporary frames. The different types of drawings also afford a feeling of how the developers and designers viewed the vehicles of the near future at different periods in time. A monitor showing films will also provide insights into the world of Mercedes-Benz design today, while the F 800 Style show car points the way forward towards the direction in which the brand’s future design may be heading.

As an appropriate link between the present day and the birthday of the motor car, a brochure on the Benz Patent Motor Car will also be available. Forming part of the “125! years of the motor car” anniversary campaign, it shows the Patent Motor Car in a modern context and underscores the timeless design created by Carl Benz. With its fascinating text, photos and important technical details, at the same time the brochure represents a special means of communication reflecting the leadership aspirations of Mercedes-Benz.

The exhibition displays will be rounded off in a 1740-square-metre space in Hall 7, where numerous brand clubs will be exhibiting, enabling fans to indulge in their shared passion for products from the brand’s 125-year automotive history – which stretches from the inventions of Carl Benz and Gottlieb Daimler through to the innovations of the present day. The same also applies in particular to the 300-square-metre stand belonging to HISTORIA Mobilis, the classic car interest group founded by employees of Daimler AG in 2005.

The members’ vehicle fleet includes six Mercedes-Benz cars, among them the 190 SL (W 121), 300 SL Roadster (W 198 II), 250 SL (W 113), 450 SEL (W 116), 190 (W 201) and 190 E 2.3-16 (W 201). The company is particularly looking forward to their attendance, given that employee involvement is one of the focal points of this 125th anniversary year of the birthday of the motor car.

Mercedes-Benz F800 Research Vehicle On Display at Mercedes-Benz Museum

June 1 - July 11, the Mercedes-Benz F800 Style research vehicle will be on display at the Mercedes-Benz Museum in Stuttgart

The future of the automobile has arrived at the Mercedes-Benz Museum. Beginning the first of June through July 11, 2010, the Mercedes-Benz F800 Style research vehicle will be on display at the Mercedes-Benz Museum in Stuttgart. The fascination of technology display is accessible free of charge in the exhibition area.  Visitors can learn about the fascinating study, view the Mercedes-Benz F800 as well as have their questions answered.

With the Mercedes-Benz F800 research car, Mercedes-Benz styles the future of the automobile from a new perspective.  The five-seater combines highly efficient powertrain technologies with unique safety and comfort features as well as an emotional design language. The F800 Style offers a spacious interior with smart seat, control and display concepts. The newly developed multi-drive platform is suitable for an electric propulsion with fuel cells – with a range of almost 600 miles – and for the use of a plug-in hybrids, which can go up to 30 miles on pure electricity. Both versions of the F800 Style allows locally emission-free mobility on premium levels, combined with full everyday practicality and a dynamic driving experience.

The Mercedes-Benz Museum is open daily from Tuesday to Sunday from 9 am to 6 pm.Further information is available for visitors to the Classic Customer Centre online at www.mercedes-benz-classic.com

Mercedes-Benz SLS AMG and Mercedes F800 Style Win the AUTO BILD Design Award 2010

Around 100,000 readers of AUTO BILD magazine have voted the Mercedes-Benz SLS AMG Germany's most attractive car

Around 100,000 readers of AUTO BILD magazine have voted the Mercedes-Benz SLS AMG Germany’s most attractive car. The super-sports car received the most votes of any newly launched model. Second place in the overall rating was taken by the new Mercedes-Benz E-Class Cabriolet. The Mercedes-Benz F 800 Style emerged as the winner in the “Studies & Concept Cars” category.

For the fifth time, Germany’s largest automobile publication AUTO BILD asked its readers to vote for the most attractive cars. There was a choice of 103 new products in five categories. Overall first place in this top-class automotive beauty pageant was taken by the Mercedes-Benz SLS AMG. The readers voted the E-Class Cabriolet from Mercedes-Benz into second place. In addition, the AUTO BILD readers considered the Mercedes-Benz F 800 Style to be the visual highlight among the studies and concept cars. Mercedes-Benz Chief Designer Prof. Gorden Wagener: “Our vehicles are self-assured examples of refined sportiness. The SLS AMG, the E-Class Cabriolet and the F 800 Style exhibit the unmistakable style of Mercedes-Benz design, and set design trends for the future.”

Mercedes-Benz also led the field in last year’s vote: in the AUTO BILDDesign Award 2009, the readers gave first place to the E-Class Saloon as Germany’s most attractive car, while the E-Class Coupé was the winner in its category.

BASF Develops Liquid Metal as an Automotive Paint for Mercedes-Benz F 800 Style

Daimler and BASF Coatings have joined forces to develop paint that lends a special fascination to the Mercedes-Benz F 800 Style

Daimler and BASF Coatings have joined forces to develop the Alubeam paint that lends a special fascination to the F 800 Style by Mercedes Benz. BASF’s Liquid Metal basecoat immerses the car in a radiant deep gloss, making it look as if it were made of chrome rather than painted. The research vehicle’s latest appearance was at the Geneva Motor Show.

The F 800 Style’s appearance was a key factor in the sensation. The new coating gleams like liquid metal. Alubeam stretches around the body like a metallic skin, lending the F 800 Style coated in gray metallic a highly dynamic note. The successful integration of a special-effect pigment into a waterborne paint system is the key to the unique metallic look. This makes the system environmentally friendly, complying with all environmental legislation.

Like a metallic skin

Liquid Metal paintsuse aluminum flakes as effect pigments. For the latest generation of Liquid Metal paints, BASF uses so-called PVDA pigments (physical vapor deposited aluminum). As a result, the paint has a more uniform appearance and seems to stretch across the car’s body like a metallic skin, emphasizing the important lines and contours of the vehicle design more significantly. The surfaces can reflect the light with greater intensity and are given additional gloss. The resulting metallic look has an intensity that could not previously be achieved with conventional metallic paints.

BASF Coatings’ Liquid Metal is available today as an environmentally friendly waterborne basecoat and complies with the required specifications for adhesion and weathering. Add-on parts can be painted in the color of the vehicle, too.

Mercedes-Benz at the Geneva International Automobile Salon 2010

Premium automobiles that combine environmental responsibility with the pure fascination of Mercedes-Benz

“We’re driving for victory not only in Formula 1, but also in ‘Formula Green’ – with premium automobiles that combine environmental responsibility with the pure fascination of Mercedes-Benz.” These were the words of Dr. Dieter Zetsche, Chairman of the Board of Management of Daimler AG and Head of Mercedes-Benz Cars, speaking today at the press conference marking the opening of the 2010 Geneva Salon. The brand with the three-pointed star is demonstrating here that the lowest consumption and CO2 figures can also be achieved with large, comfortable vehicles equipped with refined engines.

Star of the Premium Class in Geneva: F 800 Style with “green” technology and avant-garde design

One particularly impressive example of this is the F 800 Style which, here in Geneva, Mercedes-Benz is presenting under the title “efficiency meets elegance”. The new research vehicle delivers a comprehensive glimpse into the future of the premium automobile. The five-seat luxury class saloon, which offers a generously proportioned interior with intelligent seating, operating and display concepts, combines highly efficient drive technologies with innovative comfort and safety functions, as well as an emotional design language that interprets modern Mercedes design in line with the brand’s hallmark cultivated sporting character. A global first for large saloons is the all-new variable drive architecture. It is suitable for both fuel-cell electric drive, for a range of around 600 kilometres, and for use as a plug-in hybrid, with an overall range of around 700 kilometres and an electric-only range of 30 kilometres. Both variants of the F 800 Style enable premium mobility with zero local emissions combined with complete everyday usability.

“With the F 800 Style, we are underscoring our drive to bring together responsibility for the environment with practical customer benefits and automotive fascination”, said Dr. Thomas Weber, Member of the Board of Management of Daimler AG responsible for Group Research and Development Mercedes-Benz Cars. “Our new research vehicle combines this leadership role in innovative drive concepts with classic Mercedes strengths in the fields of design, safety, comfort and superb performance.”

With an exterior vehicle length of 4.75 metres (wheelbase 2,924 mm, width 1,938 mm), all the components of the efficient and environmentally-friendly drive are packaged for optimum space usage in the engine bay of the F 800 Style and in cavities within the vehicle chassis. In terms of compact construction, both the plug-in hybrid and fuel cell systems require comparatively little packaging space. Thus, the interior of the F 800 Style is completely unencumbered.

F 800 Style with plug-in-hybrid – refined performance with 68 grams of CO2

In developing the F 800 Style with plug-in hybrid, Mercedes engineers paid particular attention to the further development of all-electric driving in urban traffic. Its drive unit consists of a V6 petrol engine with next-generation direct injection developing around 220 kW (300 hp) and a hybrid module with around 80 kW (109 hp) fully integrated into the casing of the 7G-TRONIC seven-speed automatic transmission, as in the Mercedes-Benz S 400 HYBRID launched in mid-2009. Its substantial power reserves facilitate a top speed in electric mode of 120 km/h. This means that the F 800 Style can also handle out-of-town traffic conditions. The overall output of the hybrid drive stands at around 300 kW (409 hp).

The efficient drive and a CO2 bonus for battery-electric operation enable the F 800 Style to attain a certified consumption figure of 2.9 litres of petrol per 100 kilometres. This results in CO2 emissions of 68 grams per kilometre. With its efficient drive, the F 800 Style marks another step towards market readiness for the plug-in hybrid, which Mercedes-Benz will put into series production with the next-generation S-Class.

Considerable efficiency improvements in the new C and E-Class models

The brand with the three-pointed star is demonstrating its consistent approach to efficiency at the Geneva Salon with two new series production models – the new E 250 CDI BlueEFFICIENCY consumes only 4.9 instead of 5.8 l/100 km, while its CO2 emissions are down from 154 to 129 g/km (preliminary combined figures). The C 220 CDI BlueEFFICIENCY gets by on 4.5 l/100 km or 119 g CO2/km. Both models now have a special automatic start/stop system – combined in the E-Class for the first time with the further developed 7-speed automatic transmission.

Zetsche: “We have significantly reduced consumption and emissions with our BlueEFFICIENCY offensive. Our new models boast an excellent ratio of performance to CO2 emissions, thereby achieving an outstanding degree of efficiency.”

E 300 BlueTEC HYBRID – first diesel hybrid from Mercedes-Benz delivers amazing efficiency

Another particularly impressive example of this is the E 300 BlueTEC HYBRID. The first diesel hybrid from Mercedes-Benz has already successfully entered everyday testing and is scheduled for market launch next year. Its 15 kW electric motor facilitates electric-only driving and supports the 150 kW (204 hp) four-cylinder diesel engine under acceleration (boost effect). With a combined output of 165 kW (224 hp), the E 300 BlueTEC HYBRID consumes 4.1 l/100 km. That equates to CO2 emissions of 109 g/km. This sets the comfortable, safe and smooth-running luxury saloon apart not only from its direct competitors, but also from smaller vehicles with considerably less power. When it comes to efficiency, this differential is even greater – with CO2 emissions of 0.48 grams per hp, the E 300 BlueTEC HYBRID achieves an outstanding result.

“The E 300 BlueTEC HYBRID is yet another impressive demonstration of our ability to build the most efficient vehicles in the world,” said Dr. Thomas Weber. “Efficiency is a core element of our development strategy that we are implementing consistently in line with the formula – refined performance with simultaneously low consumption. And this enables us to fulfil the high expectations of our customers – exceptional environmental sustainability without sacrificing safety, comfort and dynamics.”

The new E-Class Cabriolet – “four seasons, four passengers”

The new E-Class Cabriolet, which celebrates its European premiere in Geneva, offers refined open-air driving fun from 5.4 l/100 km. “With the open-top four-seater, our successful E-Class family is complete,” said Dr. Joachim Schmidt, Head of Sales and Marketing Mercedes-Benz Cars. “The E-Class is very well received on the market; the saloon is currently the world’s best-selling car in its segment. In Western Europe, it has achieved a market share of 31 percent, and in Germany, as much as 56 percent.”

Thanks to its classic soft top, the open four-seater delivers that pure convertible feeling. True to the motto “four seasons, four passengers”, it combines comfort, elegance and year-round usability. This comes courtesy of features such as the unique automatic AIRCAP® wind deflector that deploys at the touch of a button and significantly reduces turbulence in the vehicle interior. It dispenses with the assembly usually associated with conventional wind deflectors and doesn’t interfere with the side profile of the cabriolet. Additional equipment also includes a redeveloped version of the AIRSCARF® neck-level heating system integrated into the front seat backrests, which blows warm air from adjustable air vents in the head restraints and warms occupants around the neck area like an invisible scarf.

For comfortable travel with the roof closed, there is the production standard sound-dampening roof. With this, the E-Class Cabriolet boasts one of the quietest interiors in the segment of four-seat premium soft-top cabriolets. The roof can be opened and closed at the touch of a button in just 20 seconds – even while driving at speeds of up to 40 km/h. Like all E-Class models, the Cabriolet, too, offers an outstanding level of safety. Standard equipment includes the “ATTENTION ASSIST” drowsiness detection system, “PRE-SAFE®” anticipatory occupant protection, the “Intelligent Light System” and the “DISTRONIC PLUS” adaptive cruise control.

Mercedes-Benz SLS AMG – Official F1™ Safety Car

A further highlight of the 2010 Geneva Automobile Salon comes from the motorsport sector. When the new Formula 1 season starts in Manama, Bahrain (12 – 14 March 2010), it will do so with the most spectacular and highest-performing Official F1™ Safety Car of all time. The Mercedes-Benz SLS AMG, celebrating its launch on 27th March 2010, is responsible for ensuring maximum safety in Formula 1. The Gullwing takes over from the SL 63 AMG, which served as the Official F1™ Safety Car in 2008 and 2009.

Mercedes-Benz at the 2010 Geneva International Motor Show: Mercedes-Benz F 800 Style

Mercedes-Benz F 800 Style- Efficiency with elegance, pioneering executive saloon with green technology and avant-garde design

The Mercedes-Benz F 800 Style research vehicle shows the future of premium cars from a new perspective: the one-off five-seater executive saloon combines efficient drive technologies with unparalleled safety and convenience features as well as an emotive design idiom, which interprets current Mercedes-Benz styling in line with the brand’s hallmark attribute of refined sportiness. With an exterior length of 4.75 metres, the F 800 Style offers a generously-sized interior incorporating intelligent seating, control and display concepts. Another world-first for large saloons is the all-new, exceptionally flexible multi-drive platform, which is suitable for electric drive with fuel cells, enabling a range of almost 600 kilometres, as well as for a plug-in hybrid that can drive for up to 30 kilometres solely on electricity. Both variants of the F 800 Style make locally emission-free mobility possible for a premium car, while at the same time being ideal for everyday driving and providing a dynamic driving experience.

“We are dedicated to reconciling our responsibility for the environment with practical customer benefit in an exciting car,” says Dr Thomas Weber, the Daimler Board of Management member responsible for Group Research and Mercedes-Benz Cars Development. “The new F 800 Style research vehicle combines this commitment to providing the leading innovative drive concepts with our traditional Mercedes strengths in the areas of design, safety, comfort and outstanding performance.”

A glimpse of the future for pioneering executive saloons

Within the compact 4.75-metre long exterior of the F 800 Style, all of the components of the vehicle’s exceptionally efficient and environmentally compatible alternative drive systems (plug-in hybrid or fuel-cell drive system) are installed in the engine compartment and in the gaps within the chassis to save space. Each of the drive systems takes up comparatively little space. This applies in particular to the electric drive with fuel cells, which has been enhanced by Mercedes-Benz to be compact and powerful. The front end’s compact package was made possible by the consistent downsizing of all F-CELL components. As a result, the entire interior space is preserved and offers plenty of room for five occupants.

“For many decades now, our research vehicles have been turning pioneering concepts into reality and thereby setting future trends. We set a course in the large touring saloon segment in 2007, when we unveiled the F 700,” says Professor Herbert Kohler, Head of E-Drive & Future Mobility and Chief Environmental Officer at Daimler. “Characteristic features of the F 800 Style include innovations whose development is already close to the series production stage. This is true not only of the electric drive with fuel cells but also of the plug-in hybrid, whose components were taken from our modular system for electric and hybrid vehicles.”

F 800 Style with plug-in hybrid: outstanding performance and CO2 emissions of 68 grams per kilometre

In combination with the powerful plug-in hybrid drive system, the F 800 Style is a dynamic expression of the “fascination and responsibility” concept. Its drive unit consists of a V6 petrol engine developing around 200 kW (272 hp) with next-generation direct injection, a hybrid module developing around 80 kW (109 hp) and a lithium-ion battery which can be recharged either at a charging station or a household power socket. Thanks to its powerful and high-torque hybrid module, in the city the F 800 Style can run exclusively on electricity and therefore without generating any local emissions. Because it also provides high torque right from the moment it starts, the vehicle delivers the same level of performance as a car with a V6 petrol engine even when operating in electric mode. The F 800 Style with plug-in hybrid can run purely on electricity for up to 30 kilometres. The F 800 Style research vehicle therefore marks a further important step in the development of a market-ready plug-in hybrid. Mercedes‑Benz will begin series production of this technology when the next-generation S-Class is introduced.

Thanks to its efficient drive system and a CO2 bonus for its battery-electric driving mode, the vehicle has a certified fuel consumption of 2.9 litres of petrol per 100 kilometres, equivalent to low CO2 emissions of 68 grams per kilometre – six grams per kilometre lower than the Vision S 500 Plug-in HYBRID. Yet the F 800 Style with plug-in hybrid still delivers performance on a par with a sports car (0-100 km/h in 4.8 s, top speed of 250 km/h). When driven in electric mode, the F 800 Style has a top speed of 120 km/h, and can thus also meet practically every requirement associated with long-distance driving.

As is the case with the Mercedes-Benz S 400 HYBRID introduced in the summer of 2009 and the Vision S 500 Plug-in HYBRID, the powerful electric module with an output of around 80 kW (109 hp) in the F 800 Style is integrated in the housing of the 7G-TRONIC seven-speed automatic transmission. The lithium-ion battery in the new research vehicle is located underneath the rear seat bench, where it takes up little space, creates a low centre of gravity and ensures maximum safety in the event of a crash.

The electric drive components in the F 800 Style with plug-in hybrid once again demonstrate the versatility of Mercedes-Benz’s modular hybrid system, which can be expanded in various ways, depending on performance needs and the area of application. On this basis, it is possible to combine hybrid modules and batteries of different performance ratings with fuel-efficient, high-torque petrol and diesel engines. Examples range from the current mild hybrids all the way to plug-in hybrids that enable exclusively electric driving over long distances. When developing the F 800 Style with plug-in hybrid, the Mercedes engineers particularly focused on improving the possibilities of driving exclusively with electricity in urban traffic. As a result, the F 800 Style offers even higher power reserves in e-mode than the Vision S 500 Plug-in HYBRID. The F 800 Style can therefore easily master all kinds of city traffic while producing no local emissions. With the powerful hybrid module, the top speed of the F 800 Style with plug-in hybrid has been increased from 75 km/h to 120 km/h in electric mode compared to the Vision S 500 Plug-in HYBRID. Furthermore, it emits 68 grams of CO2 per kilometre, compared to the latter vehicle’s 74 grams per kilometre.

Flexible, safe and fully suited to everyday use: F 800 Style with electric drive based on fuel-cell technology

The F 800 Style with electric drive based on fuel-cell technology also offers high levels of driving pleasure and handling dynamics. The vehicle’s electric motor develops around 100 kW (136 hp) and has an impressive torque of around 290 Nm. The fuel cell generates the traction current by chemically reacting hydrogen with oxygen on board the vehicle, producing water vapour as the only emission in the process.

The components of the fuel-cell drive are taken from the E-Drive modular system, which Mercedes-Benz has developed for a variety of different electric vehicles. These components, which are already being installed in the limited-edition B-Class F-CELL, can be flexibly used and are suitable for a variety of different drive configurations. The F 800 Style is an example of this, as it uses rear-wheel drive, in contrast to the B-Class F-CELL. The same components are also installed in commercial vehicles, with developments here being spearheaded by the new Citaro fuel-cell bus, which is equipped with two of the F-CELL systems used in passenger cars.

The new Mercedes-Benz research vehicle has the fuel cell located in the front, while the compact electric motor is installed near the rear axle. The lithium-ion battery is positioned behind the rear seats, where it benefits from maximum possible protection against the effects of accidents, as do the four hydrogen tanks. Two of the tanks are located in the transmission tunnel between the passengers, while the other two are underneath the rear seat. They are designed to withstand all conceivable loads that could occur.

F 800 Style with further innovations for enhanced convenience and safety

In addition to a multi-drive platform that is unparalleled for large saloons and a combination of different alternative drive technologies, the F 800 Style features many other technological innovations, such as a new control and display concept and a human-machine interface (HMI) with a cam touchpad. The display has many additional functions not found in conventional instrument clusters. The F 800 Style model’s control and display concept focuses for the first time primarily on electric driving functions.

HMI with cam touchpad for intuitive and reliable control

The new cam touchpad HMI is an intelligent system expansion for COMAND. For many years now, Mercedes-Benz has been forging ahead with the development of innovative control and display systems. A particularly user-friendly innovation is being presented in the F 800 Style. The HMI unit here consists of a touchpad on the centre console and a camera that records video images of the user’s hand as it works the pad. The live image of the hand is presented in transparent form on the central display above the centre console. The user sees the contours of his or her fingers glide across the image without covering anything, thus ensuring that all of the functions of the currently used menu remain visible so that they can be easily operated by applying slight pressure to the touchpad. Pressing the display with one’s fingers generates a feeling similar to that of touching laptop keys so that users know when they are carrying out specific actions.

The cam touchpad HMI unit recognises finger movements on the pad surface – such as wiping, pushing, turning, and zooming – thus enabling intuitive control of the climate control system, telephone, audio and navigation systems, and internet access. The unit enhances active safety as well, since it is extremely easy and convenient to use and therefore does not distract the motorist as much from the actual task of driving. And unlike conventional touchscreens, the HMI c am touchpad does not get smudged with fingerprints, ensuring that it remains clearly visible at all times.

Furthermore, the cam touchpad has clear advantages over conventional touchpad units, since the latter generally depict hand or finger positions only by a small point on the display. Their lack of precision makes it very risky to enter information while driving, because doing so diverts the motorist’s attention too much from the road. By contrast, the HMI with cam touchpad can be easily and safely operated even while driving. Testers have confirmed that the HMI with cam touchpad is extremely easy and safe to use, particularly as a result of the transparent depiction of the hand.

Range on Map: graphic range depiction during electric operation

Another exceptionally user-friendly innovation created by the Mercedes engineers is the “Range on Map” function, which shows the remaining possible travel radius in electric mode as a 360° view on a map. The system provides this function by combining information on the current battery charge level with data from the navigation system. In the new control and display concept, Mercedes‑Benz has created a solution that provides an unparalleled amount of information based on a system of exemplary clarity. The engineers have thus achieved the goal of successfully developing a comprehensive yet easy-to-use information and control system for future cars equipped with electric or partially electric drive systems.

Mirror display is easy on the eyes

The mirror display of the innovative cam touchpad HMI eliminates the differences between close-proximity visibility and visibility over longer distances, thus contributing to the driver’s physiological safety in typical Mercedes style. The system displays driving and vehicle information via a mirror in the instrument cluster so that it appears to be further away. The distance the eye looks into is thus extended, which means less switching between near and far focus – and therefore less fatigue – for the eyes.

New DISTRONIC PLUS Traffic Jam Assist function further reduces the stress of driving

In 2006, Mercedes-Benz introduced DISTRONIC PLUS, the world’s first proximity and speed control system that operates right up to the point at which the car comes to a standstill. The system substantially reduces driver stress in dense traffic, as it regulates the distance from the vehicle in front even at very low speeds, all the way down to a standstill. With its new DISTRONIC PLUS Traffic Jam Assist function in the F 800 Style, Mercedes-Benz has also become the world’s first car manufacturer to implement a system that is capable of following the vehicle in front of it into bends. The system recognises the difference between driving along twisting roads and turning corners, which means that it does not “blindly” follow the vehicle in front – for example, when the vehicle in front changes lanes in order to exit a motorway. The result is that, at speeds of up to about 40 km/h, the Traffic Jam Assist function takes care of both longitudinal and transverse movements so that the driver does not actually have to steer the car. When the 40 km/h mark is exceeded, the steering torque that keeps the vehicle in its lane is gradually reduced to a point at which the Traffic Jam Assist function is deactivated smoothly.

“The DISTRONIC PLUS Traffic Jam Assist function is the logical continuation of the Mercedes-Benz assistance and safety philosophy. With it, we are setting another milestone on the path towards creating innovative systems, with which we will further enhance the high level of driving comfort that is a Mercedes hallmark,” says Professor Bharat Balasubramanian, Head of Product Innovations & Process Technologies at Group Research and Advanced Engineering.

The required data is generated by radar distance sensors that are supplemented by a stereo camera. Drivers can, of course, override the system at any time. Sensitive sensors detect the driver’s active steering movements, thus automatically deactivating the system’s lateral control function.

PRE-SAFE 360° improves safety in rear-end collisions

While the Traffic Jam Assist function heightens comfort and active safety, the PRE-SAFE 360° protection system further improves passive safety. PRE‑SAFE 360° is based on the PRE-SAFE® anticipatory occupant protection system developed by Mercedes-Benz. PRE-SAFE 360° also monitors the area behind the vehicle. As a result, the system applies the brakes around 600 milliseconds before an anticipated rear-end collision occurs. The key advantage of this system is that braking a stationary vehicle that is hit in the rear helps prevent secondary accidents such as those that occur when the car is catapulted uncontrollably towards a junction or a pedestrian crossing. Of course, PRE-SAFE 360° still allows the driver to take control at any time. For example, the brake is released immediately if the driver hits the accelerator knowing that there is sufficient space in front of his or her own vehicle to avoid being hit in the rear.

Rear pivot-and-slide doors make for extremely easy entry

One particularly customer-friendly innovation for the F 800 Style is the rear-door design. Whereas the front doors are attached to the A-pillars in a conventional manner and open wide towards the front, the rear doors slide backwards when opened, as they are suspended from an interior swivel arm. Because the doors slide back close to the vehicle body, occupants find it much easier to get into and out of the car in tight parking spaces.

The elegant F 800 Style also has no B-pillars, making the entire space between the A- and C-pillars fully accessible when the doors are opened. Despite the absence of B-pillars, the F 800 Style boasts an extremely robust and lightweight bodyshell that meets Mercedes’ typically stringent crash-safety requirements.

Reinterpretation of the classic Mercedes-Benz design idiom

The F 800 Style is both a technology platform and a showcar. This research vehicle was created as a result of collaboration between technical research and advanced engineering departments and the advanced design studios in Sindelfingen, Germany and Como, Italy. Its exterior appearance is marked by a long wheelbase, short body overhangs and a sensually flowing roof line.

“The exciting coupe-like roof line and the vehicle’s balanced proportions lend it a stylishly sporty look that reinterprets the Mercedes-Benz design idiom and emphasises the sculptural character of the F 800 Style,” says Mercedes-Benz Head of Design Professor Gorden Wagener. “The result is a harmonious blend of innovative form and function, which conveys a sense of great styling and authority.”

Hallmark Mercedes front end with distinctive LED headlamps

The vehicle’s front end features a variation of the radiator grille with the centrally positioned star that is a hallmark of sporty Mercedes models. The curved radiator grille louvres flow softly around the tube holding the Mercedes star. Along with the wide radiator grille and the generously curved air intake openings, the model’s unique, powerful LED headlamps emphasise the dynamic nature of the research vehicle. The headlamps are divided into individual segments for daytime driving lights, turn signal indicators and main headlamps. The F 800 Style’s tail lights also feature state-of-the-art LED technology, which enables an exciting interplay of indirect illumination and direct beams. The result is an attractive, unmistakable and memorable visual effect.

Wood and light create a cosy interior

Fine wood surfaces and plenty of light ensure a high level of comfort in the interior of the F 800 Style. Occupants will immediately notice the modern sense of lightness: functional elements such as the cockpit and the door armrests seem to float in space like sculptures. The lightweight-construction seats in the F 800 Style consist of a magnesium shell and a carbon-fibre laminate backrest across which resistant netting is stretched. The seat shell also features wood veneer. For the wood veneer process, the Mercedes-Benz engineers used a 3D surface coating procedure designed especially for the veneering of three-dimensional surfaces. This same procedure was used to create the wood finishing in the centre console, on the doors and in the cockpit. These wood finishing pieces are moulded as 3D laminated components and are augmented by an aluminium core, which ensures that the components meet Mercedes’ typically high crash-safety standards.

Successful transfer from research to series production

Mercedes-Benz has presented 13 research vehicles since the early 1980s. This series of exciting and pioneering cars – beginning with the Auto 2000 in 1981 and leading up to today’s F 800 Style – offers proof of the consistency and foresight with which Mercedes-Benz engineers address the core issues of research and technology in order to develop innovative solutions for the future. Many systems that were first used in research vehicles and viewed as revolutionary at the time can now be found in Mercedes-Benz production cars, including the DISTRONIC proximity control system, which was first installed in the F 100 in 1991 and made its series-production debut in the S-Class in 1998.

The F 800 Style marks a continuation of this approach. Like its predecessors, the model features key drive, comfort, and safety innovations, as well as an avant-garde design, all of which point the way forward for the series production of future Mercedes-Benz vehicles that will continue to deliver an impressive take on the “fascination and responsibility” theme.

Mercedes-Benz F 800 Style Research Vehicle: Innovative in Form and Function

The F 800 Style combines groundbreaking upper-class sedan with the highly emotional formal idiom of the new Mercedes-Benz design

A synthesis of green technology and stylish-sporty design, the F 800 Style impressively demonstrates Mercedes-Benz’ ability to harmonize automobile fascination and emotion with the continually increasing demands of environmental compatibility. Like its predecessor, the F 700 presented at the 2007 IAA motor show, the latest research vehicle from the brand with the star offers a clear idea of what we can expect in the future from premium automobiles “made by Mercedes-Benz.” Whereas the 5.18-meter F 700 provided a preview of the large touring sedan of the future, the much shorter F 800 Style (4.75 meters exterior length) points the way toward developments to come in the upper-range sedan segment.

“The F 800 Style combines the functionality of a groundbreaking upper-class sedan with the highly emotional formal idiom of the new Mercedes-Benz design,” says Mercedes-Benz Head of Design Gorden Wagener. “The long wheelbase and the model’s intelligent interior design ensure a generous amount of space and great freedom of movement for five occupants. The result is a distinctive harmony of form and function, whereby the Mercedes brand value of ‘cultivated sportiness’ can be seen and felt in every detail.”

With a total length of 4.75 meters, the F 800 Style has both a longer wheelbase (2,924 millimeters) and a greater width (1,938 millimeters) than today’s upper-range sedans. All of the components of the vehicle’s extremely efficient and environmentally compatible alternative drive system (either Plug-in Hybrid or fuel cell drive) are installed in a space-saving manner in the engine compartment and in the gaps within the chassis. As a result, the entire interior space is preserved and offers plenty of room for up to five occupants.

Reinterpretation of the typical Mercedes-Benz design idiom

The exterior appearance of the F 800 Style is marked by its long wheelbase, short body overhangs, and a sensually flowing, coupe-like roof line. The dynamic side view and the vehicle’s balanced proportions lend it a sporty yet sensual look that conveys a feeling of style and superior performance. “The F 800 blends seamlessly into our design scheme,” says Wagener. “It’s immediately recognizable as a Mercedes, even though it embodies our reinterpretation and further development of the brand’s typical design idiom.”

Another important design feature in the F 800 Style is its organically stretched body surface elements. These flow into convex transition zones and are delineated by precisely curved lines. This creates characteristic lines which visually subdivide the vehicle body and generate emotional tension. The powerful front contoured line on the sidewall extends across the flank and then fades off as it moves downward. This line lends the F 800 Style – with its grey metallic ALU-BEAM color tone – a highly dynamic appearance, without making it seem aggressive. The sensually curved roof line underscores the exceptional aerodynamic quality of the coupe, which has a height of 1.43 meters.

The Mercedes-Benz brand star is smoothly framed

The F 800 Style’s front end features a variation of the radiator grille with the centrally placed brand star that can be found in the new E-Class coupe as well as in other models. This grille extends prominently toward the front in the F 800 Style, while the bionically curving lamellae softly flow around the tube holding the Mercedes-Benz brand star. Other noticeable design features include the drop-shaped and thus aerodynamically designed exterior mirrors, whose housings, like those in the Concept BlueZERO model, are partially transparent and backlit.

LED headlights give the F 800 Style an expressive “face”

A “shining” example of technological and design innovation at Mercedes-Benz is offered in the truest sense of the word by the powerful LED headlights in the F 800 Style. The combination of fiber optics and state-of-the-art LED technology lends the vehicle a striking appearance. Along with the wide radiator grille and the generously curved air intake openings, the LED headlights emphasize the dynamic nature of the research vehicle. The headlights are divided into individual segments for daytime running lights, turn signal indicators, and primary headlights.

The F 800 Style’s taillights are also equipped with state-of-the-art LED units that enable an exciting interplay of indirect illumination and direct beams, which further enhances the stylish appearance of the vehicle’s rear section at night. The result is an attractive, unmistakable, and memorable visual effect.

Translucent roof makes for a bright interior

The F 800 Style’s translucent roof is divided into several segments. With flowing lines that dissolve and let more and more light through, the roof incorporates the wave styling elements of the air outlets. The F 800 Style’s 20-inch alloy wheels are equipped with plastic inserts whose bionically arranged air intake openings are shaped like filigree turbine blades.

Wood and a pleasant color gradient create a cozy interior

Natural wood surfaces and a harmonious color gradient from light to dark make for an elegant and cozy interior in the F 800 Style. This interior was created at the Mercedes-Benz Advanced Design Studio in Como, Italy, and its modern sense of lightness is immediately noticed by occupants. Functional elements such as the driver area and the door armrests seem to float in space like sculptures, while light-colored wood surfaces underscore the model’s elegant ambience. Side panels covered with alcantara form a visual contrast to the wood. The panels are light beige in the area of the A-pillar and grow darker in a smooth color gradient as they extend to the back, ending in a dark grey tone in the rear of the vehicle. Additional design details are provided by attractive engraved patterns in the rear door panels.

Innovative real wood veneering process for seats, door armrests, and the driver area

The innovative lightweight-construction seats in the F 800 Style consist of a magnesium shell and a carbon fiber laminate seatback across which a fine yet resistant netting is stretched. The seat shell is veneered with real wood. For the wood inlaying process, Mercedes-Benz engineers employed an innovative technology designed especially for the veneering of three-dimensional surfaces. The new 3D surface coating procedure developed by Mercedes-Benz was also used to install the wood finishing in the center console, on the doors, and in the driver area. These wood finishing pieces are molded as 3D laminated components and are augmented by an aluminum layer, a feature that significantly improves crash safety.

The single-section organically curved cockpit offers plenty of legroom for front-seat passengers. In a setup similar to the one used in the F 700 research vehicle from 2007, all important information for the driver is presented on the large and clearly arranged display unit in the instrument cluster. A key new feature of this improved display is that it focuses for the first time on data associated with electric vehicle operation. The unit thus puts important relevant information such as the battery charge state and remaining vehicle range at the center of attention.

The integrated display unit, which elegantly protrudes from the curved console, provides for a feeling of exceptional interior spaciousness. Outstanding ergonomic quality is guaranteed by the new HMI with cam touchpad integrated into the center console. The unit also boasts several technical innovations, including its ability to visually depict the current functions within the cam touchpad’s menu structure on the display above the center console.

Rear pivot-and-slide doors blend into the elegant design lines

The rear doors of the F 800 Style ideally embody the harmony of form and function that typifies the vehicle. Whereas the front doors are attached to the A-pillar in a conventional manner and open toward the front, the rear doors slide backward when opened. The innovative swivel arm construction of the rear doors allowed designers to forgo the use of visible door rails, giving the F 800 Style the appearance of being cast in one piece when its doors are closed. “We integrated the door technology into the vehicle in such a manner that it blends seamlessly into the overall design flow, thus perfectly harmonizing ergonomics and design,” says Wagener.

Form and function are equally important

The F 800 Style is both a technology package and a showcar. The latest Mercedes-Benz research vehicle was created through close international cooperation between the technical research and advanced engineering departments and the advanced design studios in Sindelfingen and Como, Italy. Form and function are equally important in the F 800 Style. For example, all of the air intake openings and outlets have an important technical function in addition to the bold design statement they make, and the organic, nature-based wave shape for the protective grille is a typical design feature that is present throughout the vehicle.

Mercedes-Benz F 800 Style Research Vehicle: Cultivated Sportiness

Plug-in Hybrid or fuel-cell electric drive with superior driving performance and zero local emissions

In the future, it will be more important than ever to bring mobility and environmental protection into harmony. The world’s population will continue to grow, in particular in the metropolitan areas. This will result in an increased demand for mobility and consequently increased traffic density. According to the latest studies, the total number of automobiles in the world will double to roughly 1.8 billion vehicles by 2030. As the inventor of the automobile, Mercedes-Benz has also assumed responsibility for its continued development – with respect to efficient and clean drive solutions without compromising comfort, safety, functionality, and driving fun.

The research and development work of the Mercedes engineers is by no means restricted to current customer wishes and legal requirements, however. Long-term trends – in the technology domain as well as on the social and cultural level – are identified scientifically and adapted specifically for the development of automobiles. Systematic and goal-oriented futurology is thus an essential foundation of the innovative power of Mercedes-Benz, which takes on concrete form in research vehicles emblazoned with the star.

Mercedes-Benz brings pioneering concepts to life in its research vehicles, which is why it has continually set trends for the future in recent decades. The latest example is the F 800 Style. It features numerous technical innovations that are already at a near-series or even series-ready stage of development. Examples of this include the drive system options based on either Plug-in Hybrid or fuel cell technology.

Multi drive system platform for two different drive concepts

The F 800 Style is suitable for use with a variety of drive system options thanks to its flexible multi drive platform, as the following example with two technically independent variants demonstrates:

  • As the Plug-in Hybrid, the F 800 Style offers electric mobility with zero local emissions in urban settings. Over longer distances, a gasoline engine equipped with the latest-generation direct-injection technology is supported by the hybrid module, thereby enabling a high-performance and efficient driving experience
  • The F-CELL variant is equipped with a fuel cell unit that runs on hydrogen for electric driving with zero local emissions. The only emission from electric cars powered by a fuel cell is water vapor

According to Dr. Thomas Weber, member of the Board of Management of Daimler AG with responsibility for Group Research and Mercedes-Benz Cars Development, “Hybrid and fuel cell electric drives are two important elements of our broad drive system portfolio, which enables us to satisfy all of the requirements of our customers throughout the world for the mobility of today, tomorrow, and beyond. Our road to sustainable mobility is a three-lane highway. The spectrum encompasses the optimization of vehicles with advanced combustion engines, further gains in efficiency through tailored hybridization, and driving with zero local emissions through the use of fuel cell or battery-powered vehicles.”

F 800 Style with Plug-in Hybrid: A three-liter car disguised as a sports car

Mercedes-Benz is setting new standards for future sustainable mobility with the F 800 Style. Thanks to a powerful and high-torque hybrid module, the F 800 Style Plug-in Hybrid can run almost exclusively on electricity in the city and therefore without generating any local emissions. Because it has a high torque right from the moment it starts, the vehicle has the same driving performance as a car with a V6 gasoline engine when operating in electric mode. It has an electric range of 30 kilometers. The efficient drive system and a CO2 bonus for the battery-electric driving mode help the F 800 with Plug-in Hybrid to a certified fuel consumption of only 2.9 liters of gasoline per 100 kilometers. This corresponds to extremely low CO2 emissions of only 68 grams per kilometer. Thanks to its outstanding efficiency, the F 800 Style equipped with a Plug-in Hybrid nevertheless performs like a powerful sports car. The car accelerates from zero to 100 km/h in only 4.8 seconds, and its top speed is electronically limited to 250 km/h. “The F 800 Style is thus the first three-liter car to feature such sporty performance while at the same time offering room for five passengers,” says Dr. Weber. Its drive unit consists of a V6 gasoline engine with an output of approximately 220 kW (300 hp) with next-generation direct injection and a hybrid module with an output of about 80 kW (109 hp) so that it delivers a total power of around 300 kW (409 hp). The lithium-ion battery with a storage capacity of >10 kWh can be recharged either at a charging station or a household power socket.

The powerful electric drive enables the F 800 Style to drive at speeds of up to 120 km/h solely on electric power. The low-noise electric drive, which produces zero local emissions, thus covers the entire urban transportation spectrum and a large portion of the interurban spectrum. The vehicle has a cruising range of up to 30 kilometers in electric mode. Extreme efficiency is also a characteristic of the new 3.5 liter gasoline engine. The V6 engine features innovative spray-guided gasoline direct injection with high-precision piezo injectors. Thanks to the drive unit’s high efficiency, the 45 liter fuel tank in the F 800 Style Plug-in Hybrid is sufficient for a high combined range of around 700 kilometers.

Versatile modular hybrid system

The electric drive components in the F 800 Style with the Plug-in Hybrid once again demonstrate the versatility of Mercedes-Benz’ intelligent, extensively scalable modular hybrid system. The hybrid system can be expanded in various ways, depending on performance needs and the area of application. For example, hybrid modules of various performance classes and batteries delivering the associated capacities can be combined with the most frequently produced gasoline and diesel engines from Mercedes. All hybrid modules are compatible with the 7G-TRONIC automatic transmission.

All variants of the hybrid drive system can be realized on the basis of these components: from mild hybrids to hybrids that also enable all-electric driving in addition to the boost, start/stop and recuperation functions. Another option is the Plug-in Hybrid used in the F 800 Style, which had previously been presented in similar form at the IAA 2009 in the Vision S 500 Plug-in Hybrid. With this particularly high-performance version of the Mercedes hybrid drive system, the battery can be charged via a household outlet, thus increasing the model’s electric range.

From a design standpoint, the hybrid module with around 80 kW output in the F 800 Style differs only slightly from the 44 kW variant used in the Vision S 500 Plug-in Hybrid. Whereas the lithium-ion battery in the Vision S 500 Plug-in Hybrid was placed behind the rear seats, the electric storage unit is now located under the rear seat in the F 800 Style. This installation location ensures the greatest possible crash safety, good driving dynamics thanks to the vehicle’s low center of gravity, and unrestricted space in the interior of the vehicle. The 45 liter gasoline tank is mounted behind the rear seat backrests, again in the interest of crash safety and to save space. The result is a generous 440 liters of trunk space. In designing the F 800 Style with Plug-in Hybrid, the Mercedes engineers particularly focused on improving the possibilities of driving exclusively with electricity in urban traffic. As a result, thanks to the high power reserves, the F 800 Style in e-mode easily masters all kinds of city traffic while producing no local emissions.

Clutch avoids engine drag losses

One system-specific attribute of the familiar hybrid concept from the S 500 Plug-in Hybrid is the clutch integrated between the combustion engine and the electric motor. This device decouples the two components in the pure electric drive mode, thereby ensuring the highest level of efficiency without engine drag losses. Moreover, because it is fully integrated into the converter housing of the seven-speed 7G-TRONIC automatic transmission, this clutch does not take up any additional space.

A drive battery based on lithium-ion technology is used in the F 800 Style with Plug-in Hybrid. It is cooled via a separate cooling water loop connected to the research vehicle’s climate control system to ensure that the battery is cooled within an optimal temperature window. The plug-in battery of the F 800 Style can be charged both at charging stations and via a conventional household outlet, making the F 800 Style a full-fledged electric car. The vehicle’s charging outlet is framed by lighting elements that indicate the battery’s charge status. A slowly pulsing light indicates that charging is active; a constant light means that the battery is fully charged.

Powerful hybrid module: Electric mobility not only for inner cities

The high-performance battery with its storage capacity of >10 kWh and the hybrid module delivering approximately 80 kW/109 hp enable the F 800 Style to reach speeds of up to 120 km/h when running solely on electricity. Such speeds are fully sufficient for drives in the city as well as when covering longer distances. The high torque is available from the very first turn of the electric motor, giving the F 800 Style impressive performance. The vehicle is a dynamic high-performer, yet highly efficient, nearly silent, and produces zero local emission.

The gasoline engine automatically adds its power to that of the electric motor when traveling at high speeds or when the battery range of approximately 30 kilometers is reached. The vehicle electronics synchronize the speed of the combustion engine and the hybrid module so that the clutch engages without jerking and imperceptibly to the driver. What’s more, the sophisticated interplay with the combustion engine enables numerous additional functions that positively impact fuel consumption, emissions and vehicle agility.

In addition to an ECO start-stop function, these also include the so-called boost effect, which has the electric motor providing powerful support to the combustion engine during the acceleration phase. The vehicle’s hybrid module uses regenerative braking – the recovery of energy when braking – to provide additional energy to the battery when the car is in motion. The clutch enhances efficiency here as well, as it enables complete energy recuperation without engine drag losses.

Efficient gasoline engine with spray-guided piezo direct injection

Boasting an output of around 220 kW (300 hp), the V6 gasoline engine underscores the sporty nature of the F 800 Style. The engine is very efficient, thanks to its spray-guided direct injection system with highly precise piezo injectors. In 2006 Mercedes-Benz became the world’s first automotive brand to introduce spray-guided gasoline direct injection as standard. The system improves thermodynamic efficiency to enable better fuel utilization and therefore reduced fuel consumption. A key advantage comes to the fore when the engine is in its stratified operating mode, in which it runs with high excess air and thus achieves excellent fuel efficiency.

Because the combustion process was consistently enhanced, the Mercedes direct injection engine can maintain this advantageous “lean operation” across a wider engine speed and load range. In addition, it supplies fuel to the combustion chambers several times in succession at intervals of a fraction of a second during each power stroke. In this way, it was possible to further improve mixture formation, combustion, and fuel efficiency.

Driving pleasure without pollutant emissions:The F 800 Style with electric drive based on fuel cell technology

Thanks to its well-conceived layout, the F 800 Style also offers great handling and driving pleasure as well as room for up to five occupants in the variant equipped with an electric drive based on fuel cell technology. The vehicle’s electric motor develops around 100 kW (136 hp) as well as a strong torque of approximately 290 Nm. The fuel cell generates the traction current by chemically reacting hydrogen with oxygen on board the vehicle. This process creates no pollutant emissions and produces only water vapor.

The Stuttgart-based automaker has been researching the use of electric drive systems with fuel cells in automobiles since 1994. As a result, it has gained an outstanding amount of expertise in this area. Mercedes-Benz has already presented the world’s first fuel-cell automobile to be manufactured under series conditions: the new B-CLASS F-Cell. The first units of this small-batch model will be handed over to customers in 2010.

As is the case with hybrid drive technology, the Mercedes engineers have also developed a modular building block system for vehicles with battery and fuel cell drives. The modular system makes it possible to efficiently utilize shared parts in all electric vehicles. These components range from the electric motor and transmission to the battery, high-voltage safety systems, high-voltage wiring, and software. In F-CELL vehicles, specific components such as the fuel cell stacks can be used in a wide variety of automobiles. The F 800 Style’s fuel cell and electric motor, for example, are also used in the B-Class F-CELL. The fuel cell variant of the F 800 Style has an electronically limited top speed of 180 km/h.

The F 800 Style benefits from Daimler’s outstanding expertise in the area of fuel cell technology, which extends all the way to the production of fuel cell cars and commercial vehicles. The latest Mercedes-Benz Citaro fuel cell bus is driven by two passenger car F-CELL systems of the same type that is found in the B-Class F-CELL.

Zero emissions even over long distances

The F 800 Style’s fuel cell electric drive was designed in such a way that it can be fully accommodated in the front of the vehicle. The front end’s compact package was made possible through the consistent downsizing of all F-CELL components. The components include a very quiet, yet powerful and highly efficient electric turbocharger for the air supply. Because the turbocharger is very quiet, complicated and voluminous soundproofing is not needed.

The compact components also make it possible to integrate the electric drive and fuel cell into a rear-wheel drive vehicle with the dimensions of a conventional sedan. To save space, the electric motor in such vehicles is located between the two rear wheels, while the lithium-ion battery is installed behind the backrest of the rear seat. To provide them with the best protection possible, the four hydrogen tanks are placed in the transmission tunnel between the passengers as well as underneath the rear seat.

The hydrogen for operating the fuel cell is stored in four onboard tanks at a pressure of 700 bars. The tanks can store up to 5.2 kilograms of the gaseous fuel, which is enough for a range of almost 600 kilometers. This long range is made possible through the well-thought-out integration of the tanks into the vehicle, creating the first automotive architecture that is consistently geared toward accommodating alternative drives. The tanks are hermetically sealed so that no hydrogen can escape even if the vehicle is not used for extended periods.

Increased efficiency through the recovery of braking energy

The electric motor transforms kinetic energy into electrical energy every time the brakes are engaged or the driver takes his or her foot off the gas pedal. The motor does this by recovering the energy, which it then stores in the battery. The electric motor uses electricity from the battery whenever the motorist is maneuvering in tight areas, driving in cities, caught in stop-and-go traffic, or making short trips. If the energy storage unit does not have enough capacity, the fuel cell is automatically switched on. The vehicle’s smart drive management system decides whether to use the electric energy from the lithium-ion battery, the fuel cell, or both systems together with the aim of achieving the highest efficiency in every situation.

F 800 Style with further innovations for more comfort and safety

In addition to a multi drive platform that is unparalleled for large sedans and the combination of different alternative drive technologies, the F 800 Style features many other technological innovations, These include innovative comfort and safety-related features, such the Traffic Jam Assistant developed on the basis of the DISTRONIC PLUS proximity radar system, and the especially convenient and precise HMI operating and display system featuring a cam touchpad. The display unit in the F 800 Style features numerous additional functions that go beyond those normally present in a conventional instrument cluster. The F 800 Style’s operation and display concept focuses for the first time primarily on electric driving functions.

Cam touchpad operating concept: full Internet access in the car

Provided a high-performance infrastructure is available, motorists will be able to make greater use of the Internet in automobiles in the future. In late 2008, Mercedes-Benz already provided a glance at what fully Internet-based infotainment systems in cars will look like, with myCOMAND. myCOMAND makes many new functions possible, including Internet telephony, personal Internet-based music databases, and offboard navigation systems that always employ the latest maps and also use the traffic information available on the Web when selecting routes. However, increasingly extensive infotainment functions in automobiles will require not only correspondingly large bandwidths for the communication networks, but also increasingly high-performance input and operating concepts within the vehicle.

Mercedes-Benz is presenting another particularly user-friendly innovation in the F 800 Style in the form of a new human-machine interface (HMI) equipped with a cam touchpad. The feature is a well-conceived system expansion for COMAND. The HMI unit here consists of a touchpad on the center console and a camera that records video images of the user’s hand as it works the pad. The live image of the hand is presented in transparent form in the central display above the console. The key advantage of this solution is that icons that would be covered by the hand with conventional cell phones, for example, remain visible.

Users see their hands glide across the touchscreen as a “transparent” contour, allowing them to operate the functions of the current menu by applying a slight pressure. The touchpad can be operated with several fingers at the same time, and operating it feels similar to touching the keys of a notebook computer. Because the user interface is depressed by a few millimeters when touched, the activities carried out with the fingers are physically confirmed by the sense of touch.

The cam touchpad unit recognizes finger movements on the pad surface such as wiping, pushing, turning, and zooming, thus enabling intuitive regulation of the climate control system, phones, audio and navigation systems, and Internet access. The unit enhances active safety as well, because it is very easy and convenient to use and therefore does not distract the motorist as much from the actual task of driving.

Infrared camera transmits transparent image of the hand to central display

An infrared camera records the image of the hand and transmits it to the central display of the HMI with cam touchpad. The camera also detects the direction in which the hand is moving. The hand is always shown in the display when it is nearing the touchpad, but not when it is gliding across the center console. In this way, the system makes sure that the driver is not distracted by unexpected depictions in the central display. The camera is located in the center console, and the image it records is reflected by a mirror in such a way that it is focused on the touchpad. The center console has a black cover that is transparent to infrared light and protects the image channel against dust and other environmental influences.

Easy, convenient, and precise operation

The HMI with cam touchpad can be used more easily, more conveniently, and with greater precision than conventional touchscreen operating concepts. As a result, the user’s hand can remain at an ergonomically beneficial position on the center console, since the driver does not have to bend forward to reach the central display in order to operate the touchscreen. The system offers another benefit in that the display in the

F 800 Style is not smudged by fingerprints, as is the case with a touchscreen.

The cam touchpad also offers clear advantages over conventional touchpad units in which hand or finger positions are generally depicted only by a point in the display. This lack of precision makes it very risky to enter information while driving, because doing so diverts the motorist’s attention too much from the road. By contrast, the HMI with cam touchpad can be easily and safely operated even while driving. Test persons have confirmed that the HMI with cam touchpad is much easier to use than conventional systems, and that this is especially due to the transparent depiction of the hand. Unlike conventional touchpads, which determine the finger’s position on the pad by sensing capacitance, the Mercedes-Benz system uses infrared radiation to follow the movements on the touchpad. The hand therefore does not have to directly touch the cam touchpad in order to enter information, enabling drivers to use the system even when wearing gloves or using a pen. In addition, the cam touchpad developed by the Mercedes engineers optimally augments the LINGUATRONIC voice control system.

Range on Map: Graphic range depiction during electric operation

The Range on Map function represents yet another extremely user-friendly innovation from Mercedes-Benz. This feature shows the remaining possible travel radius during electric vehicle operation as a 360° map depiction in the display. The system combines information about the current battery charge level with data from the navigation system, which also enables topographical attributes specific to the area in question to be taken into account, thus providing the driver with even more precise information about the remaining range.

The new operating and display concept from Mercedes-Benz that is used in the F 800 Style is a solution that provides exemplary clarity. The engineers have thus achieved the goal of successfully developing a comprehensive and easy-to-operate information and control system for future automobiles equipped with electric or partially electric drive systems.

The following is an overview of the features of the HMI with cam touchpad:

  • Permanently visible depiction of the separate and combined ranges of the electric motor and the combustion engine
  • When a destination is entered into the navigation system, the display shows whether there is sufficient electrical energy available to reach the destination or how far it is possible to drive in pure electric mode until the combustion engine is automatically switched on
  • To provide the driver with a quick overview, the Range on Map system shows the available electric driving range on a map
  • If the battery has to be recharged, an integrated display shows the relationship between battery charging time and energy content
  • Visualization of the energy flow (outflow of energy as well as inflow of energy through energy recovery)
  • Because the vehicle does not make any noise when in electric driving mode, the motor’s readiness after “ignition” is shown to the driver on the display
  • An electronic eco-trainer motivates the motorist to drive in an efficient manner that helps extend the vehicle’s range
  • Mercedes-Benz has designed the future-oriented HMI with cam touchpad in such a way that the number of functions can be expanded. In the future the system will, for example, also show the location of public charging stations and guide the driver to the next charging station if desired

Mirror display is easy on the eyes

One of the chief factors causing fatigue during long trips is what in medical textbooks is referred to as “accommodation” – the strain of refocusing of the eyes when frequently switching the field of vision back and forth between near objects such as the dashboard display and objects farther away on the road. The eyes use muscle power to change their focus levels, which makes them very tired over time. The innovative display system was developed to eliminate the differences between close proximity visibility and visibility over longer distances, and therefore also to further enhance the physiological safety that is typically ensured by Mercedes.

With the SERVO-HMI display, the engineers have developed an optimized human-machine interface (HMI). It has been used before, in the F 700 research vehicle in 2007. The system displays driving and vehicle information via a mirror in the instrument cluster so that they appear to be farther away. The display with the instrument panel is mounted horizontally in the dashboard. A mirror guides the light from the display onto the instrument panel, where it is visible to the driver. The distance the eye looks into is thus extended, which means less switching between near and far focus for the eyes – a contribution to driving safety that has been confirmed by scientific studies.

The comfort for an automobile’s driver and passengers is defined not least by the vehicle’s versatile interior, which is designed with the users’ needs in mind. The interior also features a state-of-the-art infotainment system for passengers in the rear, which is integrated in the fold-away backrest of the middle seat in the rear.

Intelligent measures further reduce driver stress

Now more than ever, mobility has become an indispensable part of everyday life in modern societies, and people are therefore spending more and more time on the move – especially in cars. With this in mind, Mercedes-Benz assigns especially high priority to making the driving experience as comfortable and safe as possible. An important contribution is made by systems that ease the stress on drivers and thus improve their physiological well-being. Particularly stressful for drivers is having to constantly repeat the same actions in traffic jams: start to move – roll slowly – apply the brakes – stop – start again and so forth.

Back in 2006, Mercedes-Benz introduced DISTRONIC PLUS, the world’s first proximity and speed control system, which operates even when the car is standing still – and greatly reduces stress on the driver in congested traffic. DISTRONIC Plus regulates the distance from the car in front even at very low speeds, all the way to a standstill. When the car in front begins moving again, a tap on the gas pedal or the cruise control lever is all it takes for DISTRONIC PLUS to begin again to regulate the speed and distance from the driver up ahead.

DISTRONIC PLUS Traffic Jam Assistant: Cars that drive themselves in traffic jams

With its new Traffic Jam Assistant feature in the F 800 Style, Mercedes-Benz has become the world’s first automaker to implement a system that is capable of automatically following the vehicle in front of it into curves. At speeds of up to about 40 km/h, the system takes care of both longitudinal and transverse movements so that drivers do not have to steer themselves. The driver can just sit back and relax – with hands on the steering wheel. Drivers can, of course, override the system at any time. Sensitive sensors notice if the driver moves the steering wheel, thus automatically deactivating the system’s lateral control function. When the 40 km/h mark is exceeded, the steering torque that keeps the vehicle in its lane is gradually reduced to a point at which the system smoothly disengages.

For the Traffic Jam Assistant feature, the Mercedes engineers supplemented the tried and tested DISTRONIC PLUS with proximity radar sensor by adding the “eyes” of a stereo camera. The camera and the electronic system monitor and analyze the area in front of the vehicle out to a distance of about 50 meters. The camera recognizes lane markings as well as the vehicle in front, which is also measured in terms of its position and width. As long as the vehicle in front is moving within its lane, the F 800 Style follows the vehicle by means of the measurement data from the camera. But should the driver in front move out of the lane or initiate a turn to the right or left, the assistance system limits the lateral control function to keep the F 800 Style in its own lane. In heavy traffic the Traffic Jam Assistant significantly boosts the driver’s comfort by reducing the stress of driving. The system thus contributes to the further improvement of active safety because the driver can remain alert longer and retain the ability to react quickly.

PRE-SAFE 360° improves safety in rear-end collisions

While the Traffic Jam Assistant heightens active safety, simply because the driver is able to stay alert longer, the innovative protective system known as PRE-SAFE 360° further improves passive safety. PRE-SAFE 360° was realized for the first time in the ESF 2009 experimental safety vehicle from Mercedes-Benz, which was a world first, and it is also being used in the F 800 Style. It is based on the well-known PRE‑SAFE® system presented by Mercedes-Benz in 2002. If PRE‑SAFE® recognizes a critical driving situation, the system activates occupant protection measures in advance.

The enhanced PRE-SAFE 360° monitors not only what is on either side of the vehicle, but also the area behind the vehicle. The system uses short-range and multimode sensors to monitor the area of up to 60 meters behind the vehicle. If the system for early recognition of accidents determines that a collision is unavoidable, the brakes are activated about 600 milliseconds before the impact.

Braking a stationary vehicle that is hit in the rear helps prevent secondary accidents such as those that result when such a vehicle is hit and catapulted in an uncontrolled manner into an intersection or a pedestrian crossing. This application of the brakes can also reduce the severity of possible injuries to the passengers’ cervical vertebrae because the vehicle, and therefore the occupants’ bodies, are subjected to a lower acceleration. The driver always retains control in a vehicle fitted with PRE-SAFE 360°, however. For example, the brake is immediately released if the driver hits the gas pedal knowing that there is sufficient space in front of his or her own vehicle to avoid the rear impact.

The protective effect of PRE-SAFE 360° supports that of the NECK-PRO crash-responsive head restraints. As soon as the sensors detect a rear-end impact of a predefined severity, the system releases pre-tensioned springs inside the head restraints. These move the padded surface of the head restraints slightly forward and upward within milliseconds, thus supporting the driver’s and front passenger’s heads sooner than conventional head restraints.

Rear pivot-and-slide doors ensure maximum entry comfort

A particularly customer-friendly innovation of the F 800 Style is its rear doors. Whereas the front doors are attached to the A-pillar as normal and open toward the front, the rear doors slide backward when opened.

The Mercedes-Benz engineers created an entirely new opening mechanism for the F 800 Style: Each rear door is suspended from an interior swivel arm mounted on the C-pillar. When the pivot-and-slide door is opened, it is moved away from the body a little by means of a mechanically coupled kinematic system of translation and rotation and then glides back.

Because the rear doors slide back close to the vehicle body and the front doors are comparatively compact, it is much easier to get into and out of the automobile in tight parking spaces. Dispensing with a B-pillar makes the entire space between the A-pillar and the C-pillar freely accessible when the doors are open, and the big opening gives the passengers maximum freedom of movement. The front and rear doors can be opened entirely independently of one another. There are two locks interlocking the front doors, one installed up on the roof frame and another below on the sills. The pivot-and-slide doors are locked by means of a central lock in the rear and in the front sections of the doors with corresponding slotted guides.

The highest level of crash safety even with reduced body weight

Thanks to the optimized body design, both variants of the F 800 Style also meet the highest safety standards. Despite the fact that the design does not feature a B‑pillar, the research car’s lightweight body structure is very stable and torsionally rigid. The Mercedes engineers achieved the mix of high load-bearing capacity and effective lightweight design by means of intelligent hybrid-metal construction using high-strength steels in combination with extruded aluminum components.

In addition, very rigid (sandwich) compound components with lightweight aluminum honeycomb cores were used for the underbody and the transmission tunnel. The weight- and crash-optimized modules are designed to accommodate drive system and storage components. For example, the two hydrogen tanks of the F 800 Style with fuel-cell drive, which are installed lengthwise, one above the other, save space and are well protected in the stable transmission tunnel.

Successful transfer from research to series production

Mercedes-Benz has presented 13 research vehicles since the early 1980s. The range of fascinating and pioneering automobiles that was unveiled – beginning with Auto 2000 in 1981 and leading up to today’s F 800 – offers proof of the consistency and foresight with which Mercedes-Benz engineers address the core issues of research and technology in order to develop innovative solutions for the future.

Many systems that were first used in research vehicles and viewed as revolutionary at the time can now be found in production cars, including the DISTRONIC proximity-controlled cruise control system, which was first installed in the F 100 in 1991 and made its series production debut in the S-Class in 1998. Active Body Control, which is found today in the CL-, S- and SL-Classes, is another example of the successful transfer of technology from research vehicles to series production cars, as are the windowbag and the cornering light function. The F 500 Mind served as the model for the further development of hybrid power. The vehicle combined the V8 diesel engine of an S‑Class with an electric motor. At the time, this duo formed the most high-performance, highest-torque hybrid drive system for rear-wheel drive passenger cars.

The immediate predecessor of the new F 800 Style – the F 700 presented in 2007 at the IAA in Frankfurt – is the world’s first car that can register road conditions in advance and compensate for bumps and potholes by means of its active PRE-SCAN chassis, which ensures further significant improvement of suspension comfort. Another technological highlight is the pioneering DIESOTTO drive presented in the F 700. The four-cylinder engine with only 1.8 liters of displacement combines the strengths of the low-emission gasoline engine and the low fuel consumption of the diesel. Its CO2 emissions of a mere 127 grams per kilometer correspond to consumption of only 5.3 liters of gasoline per 100 kilometers.

The F 800 Style is continuing this approach. Like its predecessors, the model features key drive, comfort, and safety system innovations, as well as an emotional design, all of which point the way forward for series production of future Mercedes-Benz vehicles that will continue to impressively combine fascination and responsibility.

Mercedes-Benz F 800 Style Research Vehicle: “Green” Technology and Avant-Garde Design

The five-seat sedan combines efficient drive technologies, unparalleled safety and convenience features and an emotive design idiom

Mercedes-Benz’ F 800 Style research vehicle is showing the future of premium automobiles from a new perspective, as the five-seat upper-range sedan combines highly efficient drive technologies with unparalleled safety and convenience features and an emotive design idiom, which interprets current Mercedes-Benz styling in line with the brand’s hallmark attribute of cultivated sportiness. The F 800 Style has a spacious interior full of intelligent seating, operating, and display concepts. Another unparalleled feature for a large sedan worldwide is an all-new multi drive platform, which is suited for electric drives with fuel cells (enabling ranges of almost 600 kilometers) as well as the use of Plug-in Hybrids that can drive for up to 30 kilometers solely on electricity. Both variants of the F 800 Style therefore make locally emission-free mobility possible at the level of a premium-class automobile, while at the same time being fully suited for everyday driving and providing a dynamic driving experience.

“We are dedicated to reconciling our responsibility for the environment with practical customer utility in a fascinating automobile,” says Dr. Thomas Weber, the Daimler Board of Management member responsible for Group Research and Mercedes-Benz Cars Development. “The new F 800 Style research vehicle combines this commitment to providing the leading innovative drive concepts with our traditional Mercedes strengths in the areas of design, safety, comfort, and outstanding performance.”

A glance into the future of pioneering upper-range sedans

Within the 4.75-meter external length of the F 800 Style, all of the components of the vehicle’s especially efficient and environmentally compatible alternative drives (Plug-in Hybrid or fuel cell drive system) are installed in a space-saving manner in the engine compartment and the gaps within the chassis. Each of the drive systems takes up comparatively little space for the installation. This applies in particular to the electric drive with fuel cell, which has been enhanced by Mercedes-Benz to be compact and powerful. The front end’s compact package was made possible through the consistent downsizing of all F-CELL components. As a result, the entire interior space is preserved and offers lots of room for five occupants.

“For many decades now, our research vehicles have been turning pioneering concepts into reality and thereby setting future trends. We set a course on the large touring sedan segment in 2007, when we presented the F 700,” says Prof. Herbert Kohler, Head of E-Drive & Future Mobility and Chief Environmental Officer at Daimler.

“Characteristic features of the F 800 Style are its innovations, whose development is already close to the series production stage. This is true not only of the electric drive with fuel cells but also of the Plug-in Hybrid, whose components were taken from our modular system for electric and hybrid vehicles.”

F 800 Style with Plug-in Hybrid: Outstanding performance despite emissions of only 68 grams CO2 per kilometer

In combination with the very powerful Plug-in Hybrid drive system, the F 800 Style is a very dynamic expression of the concept of “fascination and responsibility.” Its drive unit consists of a V6 gasoline engine with an output of approximately 220 kW (300 hp) with next-generation direct injection and a hybrid module with an output of about 80 kW (109 hp) so that it delivers a total power of around 300 kW (409 hp). The lithium-ion battery with a storage capacity of >10 kWh can be recharged either at a charging station or a household power socket. Thanks to its powerful and high-torque hybrid module, in the city the F 800 Style can run exclusively on electricity and therefore without generating any local emissions. Because it also has a high torque right from the moment it starts, the vehicle has the same driving performance as a car with a V6 gasoline engine even when operating in electric mode. The F 800 Style with the Plug-in Hybrid can run purely on electricity for up to 30 kilometers. The F 800 Style research vehicle therefore marks a further important step in the creation of a market-ready Plug-in Hybrid. Mercedes-Benz will begin series production of the S 500 Plug-in Hybrid with the introduction of the next-generation S-Class.

Due to its efficient drive system and a CO2 bonus for the battery-electric driving mode, the vehicle has a certified fuel consumption of only 2.9 liters of gasoline per 100 kilometers. This corresponds to extremely low CO2 emissions of only 68 grams per kilometer. However, thanks to its outstanding efficiency, the F 800 Style equipped with a Plug-in Hybrid nevertheless has a driving performance comparable to a sports car (0-100 km/h in 4.8 s, top speed of 250 km/h). When in electric mode, the F 800 Style has a top speed of 120 km/h, and can thus also meet the needs associated with long-distance driving.

As is the case with the Mercedes-Benz S 400 HYBRID introduced in the summer of 2009 and the Vision S 500 Plug-in Hybrid, the especially powerful electric module (approx. 80 kW) of the F 800 Style is completely integrated into the housing of the 7G-TRONIC seven-speed transmission. The lithium-ion battery in the new research vehicle is located underneath the rear seat, where it takes up little space, creates a low center of gravity, and ensures maximum safety in the event of a crash.

The electric drive components in the F 800 Style with the Plug-in Hybrid once again demonstrate the versatility of Mercedes-Benz’ extensively scalable modular hybrid system. The hybrid system can be expanded in various ways, depending on performance needs and the area of application. On this basis, it is possible to combine hybrid modules and batteries of different performance ratings with fuel-efficient, high-torque gasoline and diesel engines. Examples range from the current mild hybrids all the way to Plug-in Hybrids that enable exclusively electric driving over long distances. In developing the F 800 Style with Plug-in Hybrid, the Mercedes engineers particularly focused on improving the possibilities of driving exclusively with electricity in urban traffic. Thanks to high power reserves, the F 800 Style in e-mode easily masters all kinds of city traffic while producing no local emissions. With the new hybrid module, the top speed of the F 800 Style with Plug-in Hybrid has been increased to 120 km/h in electric mode compared to the Vision S 500 Plug-in Hybrid. At the same time, it emits only 68 grams of CO2 per kilometer, compared to the latter vehicle’s 74 grams per kilometer.

Flexible, secure, and fully suited to everyday use: The F 800 Style with electric drive and fuel cell technology

The F 800 Style also offers clean driving pleasure in the variant equipped with an electric drive based on fuel cell technology. The vehicle’s electric motor develops around 100 kW (136 hp) as well as a strong torque of approximately 290 Nm. The fuel cell generates the traction current by chemically reacting hydrogen with oxygen onboard the vehicle, producing water vapor in the process as the only emission.

The components of the fuel cell drive are taken from the range of e-drive modules, which Mercedes-Benz developed for a variety of different electric vehicles. These components, which are already being installed in the limited edition B-Class F-CELL, can be flexibly used and are suited for a variety of different drive configurations. The F 800 Style is an example of this, as it uses rear-wheel drive, in contrast to the B-Class F-CELL. The same components are also installed in commercial vehicles, with developments here being spearheaded by the new Citaro fuel cell bus, which is equipped with two of the F-CELL systems used in passenger cars.

The new Mercedes-Benz research vehicle has the fuel cell located in the front, while the compact electric motor is installed near the rear axle. The lithium-ion battery is located behind the rear seats and is protected as well as possible against the effects of accidents, as are the four hydrogen tanks. Two of the tanks are located in the transmission tunnel between the passengers, while the other two are underneath the rear seat.

F 800 Style with further innovations for more comfort and safety

In addition to a multi drive platform that is unparalleled for large sedans and the combination of different alternative drive technologies, the F 800 Style features many other technological innovations, such as a new operating and display concept and a human-machine interface (HMI) with a cam touchpad. The display shows many additional functions not found in conventional instrument clusters. The F 800 Style’s operation and display concept focuses for the first time primarily on electric driving functions.

HMI with cam touchpad for intuitive and precise operation

The new cam touchpad HMI is an intelligent system expansion for COMAND. For many years now, Mercedes-Benz has been forging ahead with the development of innovative operating and display systems. A particularly user-friendly innovation is being presented in the F 800 Style. The HMI unit here consists of a touchpad on the center console and a camera that records video images of the user’s hand as it works the pad. The live image of the hand is presented in transparent form in the central display above the console. The user sees the contours of his or her fingers glide across the image without covering anything, thus ensuring that all of the functions of the currently used menu remain visible so that they can be easily operated by applying slight pressure to the touchpad. Pressing the display with one’s fingers generates a feeling similar to that of touching laptop keys so that users know when they are carrying out specific actions.

The cam touchpad HMI unit recognizes finger movements on the pad surface such as wiping, pushing, turning, and zooming, thus enabling intuitive regulation of the climate control system, telephone, stereo and navigation systems, and Internet access. The unit enhances active safety as well, because it is extremely easy and convenient to use and therefore does not distract the motorist as much from the actual task of driving. And unlike conventional touchscreens, the HMI cam touchpad does not get smudged with fingerprints.

Conventional touchpad units generally depict hand or finger positions only by a small point in the display. Their lack of precision makes it very risky to enter information while driving, because doing so diverts the motorist’s attention too much from the road. By contrast, the HMI with cam touchpad can be easily and safely operated even while driving. Test persons have confirmed that the HMI with cam touchpad is extremely easy and safe to use, particularly as a result of the transparent depiction of the hand.

Range on Map: Graphic range depiction during electric operation

Another very user-friendly innovation created by the Mercedes engineers is the Range on Map function, which shows the remaining possible travel radius during electric vehicle operation as a 360° depiction on a map. Should municipalities only permit purely electric automobile traffic in the future, the driver can determine whether the electric range of his or her vehicle is sufficient for the journey into and out of the urban area by means of the Range on Map function. The system provides this function by combining information on the current battery charge level with data from the navigation system.

In the new operating and display concept, Mercedes-Benz has created a solution that provides an unparalleled amount of information in a system of exemplary clarity. The engineers have thus achieved the goal of successfully developing a comprehensive yet easy-to-operate information and control system for future automobiles equipped with electric or partially electric drive systems. A further-developed version of the system can be set up to also display recharging stations.

Mirror display is easy on the eyes

The mirror display of the innovative cam touchpad HMI eliminates the differences between close proximity visibility and visibility over longer distances, thus contributing to the driver’s physiological safety in a manner typical of Mercedes. The system displays driving and vehicle information via a mirror in the instrument cluster so that they appear to be farther away. The distance the eye looks into is thus extended, which means less switching between near and far focus – and therefore less fatigue – for the eyes.

New DISTRONIC PLUS Traffic Jam Assistant further reduces the stress of driving

Back in 2006, Mercedes-Benz introduced DISTRONIC PLUS, the world’s first proximity and speed control system that operates even when the car is standing still. The system substantially reduces the stress for drivers in dense traffic, as it regulates the distance from the vehicle in front even at very low speeds all the way down to a standstill. With its new DISTRONIC PLUS Traffic Jam Assistant feature in the F 800 Style, Mercedes-Benz has also become the world’s first automaker to implement a system that is also capable of automatically following the vehicle in front of it into curves. The system recognizes the difference between driving along curving roads and turning, which means it does not “blindly” follow the vehicle up in front – for example, when it changes lanes in order to exit the highway.

The result is that at speeds of up to about 40 km/h, the Traffic Jam Assistant function takes care of both longitudinal and transverse movements so that drivers do not have to steer themselves. The driver can just sit back and relax – with hands on the steering wheel. When the 40 km/h mark is exceeded, the steering torque that keeps the vehicle in its lane is gradually reduced to a point at which the Traffic Jam Assistant smoothly disengages. Drivers can, of course, override the system at any time. Sensitive sensors notice active steering movements, thus automatically deactivating the system’s lateral control function.

“The DISTRONIC PLUS Traffic Jam Assistant is the logical continuation of the Mercedes-Benz assistance and safety philosophy. With it, we are setting another milestone on the path toward creating innovative systems, with which we will further enhance the high driving comfort that is a hallmark of Mercedes,” says Prof. Bharat Balasubramanian, Head of Product Innovations & Process Technologies at Group Research and Advanced Engineering.

The required data is generated by radar distance sensors that are supplemented by a stereo camera.

PRE-SAFE 360° improves safety in rear-end collisions

While the Traffic Jam Assistant heightens comfort and active safety, the innovative protective system known as PRE-SAFE 360° further improves passive safety. PRE-SAFE 360° is based on the proactive occupant protection system PRE‑SAFE® developed by Mercedes-Benz. Unlike the previous system, PRE-SAFE 360° also monitors the area behind the vehicle. As a result, the system engages the brakes around 600 milliseconds before an anticipated rear-end collision occurs. The key advantage of this system is that braking a stationary vehicle that is hit in the rear helps prevent secondary accidents such as those that occur when the car is catapulted uncontrolled into an intersection or a pedestrian crossing. It goes without saying that PRE-SAFE 360° also allows the driver to take control at any time. For example, the brake is immediately released if the driver hits the gas pedal knowing that there is sufficient space in front of his or her own vehicle to avoid the rear impact.

Rear pivot-and-slide doors ensure maximum entry comfort

A particularly customer-friendly innovation of the F 800 Style is its rear doors. Whereas the front doors are attached to the A-pillar in a conventional manner and open wide toward the front, the rear doors slide backward when opened, as they are suspended from an interior swivel arm. Because the doors slide back close to the vehicle body, occupants find it much easier to get into and out of the automobile in tight parking spaces.

The F 800 Style also has no B-pillar, making the entire space between the A and C-pillars completely accessible when the doors are opened. Despite the lack of a B-pillar, the F 800 Style boasts a bodyshell that is both extremely robust and lightweight, and that meets the stringent demands for crash safety that are a hallmark of the Mercedes brand.

Reinterpretation of the typical Mercedes-Benz design idiom

The F 800 Style is both a technology package and a showcar. This research vehicle was created through close cooperation between technical research and advanced engineering departments and the advanced design studios in Sindelfingen, Germany and Como, Italy. Its exterior appearance is marked by a long wheelbase, short body overhangs, and a sensually flowing roof line.

“The exciting coupe-like roof line, and in general the vehicle’s balanced proportions, lend it a stylish sporty look that reinterprets the Mercedes-Benz design idiom and emphasizes the sculptural character of the F 800 Style,” says Mercedes-Benz Head of Design Prof. Gorden Wagener. “The result is a harmonious blend of innovative form and function, which conveys a sense of great styling and authority.”

Front end with distinctive LED headlights

The vehicle’s front end features a variation of the radiator grille with the centrally placed brand star that is typical of Mercedes sports cars. The curved radiator grille bars softly flow around the tube holding the Mercedes-Benz brand star. Along with the wide radiator grille and the generously curved air intake openings, the model’s unique bright LED headlights emphasize the dynamic nature of the research vehicle. The headlights are divided into individual segments for daytime running lights, turn signal indicators, and primary headlights. The F 800 Style’s taillights are also equipped with state-of-the-art LED units that enable an exciting interplay of indirect illumination and direct beams. The result is an attractive, unmistakable, and memorable visual effect.

Wood and light create a cozy interior

Precious wood surfaces and lots of light ensure a high level of comfort in the interior of the F 800 Style. Occupants will immediately notice the modern sense of lightness, and functional elements such as the driver area and the door armrests seem to float in space like sculptures. The innovative lightweight-construction seats in the F 800 Style consist of a magnesium shell and a carbon fiber laminate seatback across which a fine yet resistant netting is stretched. The seat shell also features genuine wood veneer. For the wood veneer process, Mercedes-Benz engineers used a 3D surface coating procedure designed especially for the veneering of three-dimensional surfaces. This same procedure was used to create the wood finishing in the center console, on the doors, and in the driver area. These wood finishing pieces are molded as 3D laminated components and are augmented by an aluminum core, which ensures that the components meet the high crash safety standards that are a hallmark of Mercedes.

Successful transfer from research to series production

Mercedes-Benz has presented 13 research vehicles since the early 1980s. The range of fascinating and pioneering automobiles that was unveiled – beginning with Auto 2000 in 1981 and leading up to today’s F 800 Style – offers proof of the consistency and foresight with which Mercedes-Benz engineers address the core issues of research and technology in order to develop innovative solutions for the future. Many systems that were first used in research vehicles and viewed as revolutionary at the time can now be found in Mercedes-Benz production cars, including the DISTRONIC proximity-controlled cruise control, which was first installed in the F 100 in 1991 and made its series production debut in the S-Class in 1998.

The F 800 Style is continuing this approach. Like its predecessors, the model features key drive, comfort, and safety system innovations, as well as an avant-garde design, all of which point the way forward for the series production of future Mercedes-Benz vehicles that will continue to impressively combine fascination and responsibility.